論文の概要: H2TF for Hyperspectral Image Denoising: Where Hierarchical Nonlinear
Transform Meets Hierarchical Matrix Factorization
- arxiv url: http://arxiv.org/abs/2304.11141v1
- Date: Fri, 21 Apr 2023 17:27:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 13:46:33.072902
- Title: H2TF for Hyperspectral Image Denoising: Where Hierarchical Nonlinear
Transform Meets Hierarchical Matrix Factorization
- Title(参考訳): ハイパースペクトル像のH2TF:階層的非線形変換と階層的行列分解
- Authors: Jiayi Li, Jinyu Xie, Yisi Luo, Xile Zhao, Jianli Wang
- Abstract要約: テンソル特異値分解(t-SVD)は、ハイパースペクトル画像(HSI)処理のための有望なツールとして登場した。
このレターでは、アンダーラインbf階層的非線形変換を利用して、両方のビルディングブロックのポテンシャルを利用する。
次に、H2TFに基づくHSI復調モデルを提案し、乗算器に基づくアルゴリズムの交互方向法を開発し、結果モデルに対処する。
- 参考スコア(独自算出の注目度): 12.822616064331083
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Recently, tensor singular value decomposition (t-SVD) has emerged as a
promising tool for hyperspectral image (HSI) processing. In the t-SVD, there
are two key building blocks: (i) the low-rank enhanced transform and (ii) the
accompanying low-rank characterization of transformed frontal slices. Previous
t-SVD methods mainly focus on the developments of (i), while neglecting the
other important aspect, i.e., the exact characterization of transformed frontal
slices. In this letter, we exploit the potentiality in both building blocks by
leveraging the \underline{\bf H}ierarchical nonlinear transform and the
\underline{\bf H}ierarchical matrix factorization to establish a new
\underline{\bf T}ensor \underline{\bf F}actorization (termed as H2TF). Compared
to shallow counter partners, e.g., low-rank matrix factorization or its convex
surrogates, H2TF can better capture complex structures of transformed frontal
slices due to its hierarchical modeling abilities. We then suggest the
H2TF-based HSI denoising model and develop an alternating direction method of
multipliers-based algorithm to address the resultant model. Extensive
experiments validate the superiority of our method over state-of-the-art HSI
denoising methods.
- Abstract(参考訳): 近年,高スペクトル画像(HSI)処理のためのツールとして,テンソル特異値分解(t-SVD)が登場している。
t-SVDには2つの重要なビルディングブロックがある。
(i)低ランク化変換、及び
(ii)前頭切片の低ランク化に伴う特徴付け
従来のt-SVD法は主に開発に焦点をあてる
(i) その他の重要な側面、すなわち前頭切片の正確な特徴を無視しながら。
このレターでは、両ブロックのポテンシャルを、非直交型非線形変換(英語版)と非直交型非直交型行列分解(英語版)を用いて、新しい非直交型行列分解(英語版)(h2tf)を確立することにより活用する。
低ランク行列分解や凸置換体のような浅いカウンターパートナーと比較して、H2TFは階層的なモデリング能力により変換された前頭切片の複雑な構造をよりよく捉えることができる。
次に、H2TFに基づくHSI復調モデルを提案し、乗算器に基づくアルゴリズムの交互方向法を開発し、結果モデルに対処する。
本手法が最先端HSI復調法よりも優れていることを検証する。
関連論文リスト
- Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - Parallel Vertex Diffusion for Unified Visual Grounding [38.94276071029081]
統一ビジュアルグラウンドティングは、タスク固有の設計の少ないマルチタスクデータを活用するためのシンプルで汎用的な技術経路を追求する。
ほとんどの先進的な手法は、通常、検出とセグメンテーションをモデル化するためのシーケンスとしてボックスとマスクを提示する。
論文 参考訳(メタデータ) (2023-03-13T15:51:38Z) - Hyperspectral Mixed Noise Removal via Subspace Representation and
Weighted Low-rank Tensor Regularization [10.131033322742363]
我々は,超スペクトル画像の混合雑音を取り除くために,部分空間表現と重み付き低ランクテンソル正規化(SWLRTR)をモデルに採用する。
実験により、SWLRTR法は、他の高スペクトル分解法よりも定量的かつ視覚的に優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-11-13T05:30:56Z) - Nonlinear Transform Induced Tensor Nuclear Norm for Tensor Completion [12.788874164701785]
我々はNTTNNとPAMアルゴリズムの理論的収束性に沿って低ランクテンソル完備化(LRTC)モデルを提案する。
本手法は,線形変換に基づく最先端核標準(TNN)法よりも質的に,定量的に優れている。
論文 参考訳(メタデータ) (2021-10-17T09:25:37Z) - Heterogeneous Face Frontalization via Domain Agnostic Learning [74.86585699909459]
本研究では, 視覚領域における正面視を, ポーズのバリエーションで合成できるドメイン非依存学習型生成逆数ネットワーク(DAL-GAN)を提案する。
DAL-GANは、補助分類器を備えたジェネレータと、より優れた合成のために局所的およびグローバルなテクスチャ識別をキャプチャする2つの識別器から構成される。
論文 参考訳(メタデータ) (2021-07-17T20:41:41Z) - Intermediate Layer Optimization for Inverse Problems using Deep
Generative Models [86.29330440222199]
ILOは、深層生成モデルを用いて逆問題を解決するための新しい最適化アルゴリズムである。
提案手法は,StyleGAN-2 や PULSE で導入した最先端手法よりも幅広い逆問題に対して優れていることを示す。
論文 参考訳(メタデータ) (2021-02-15T06:52:22Z) - Snapshot Hyperspectral Imaging Based on Weighted High-order Singular
Value Regularization [22.5033027930853]
スナップショットハイパースペクトルイメージングは、単一の2D測定で3Dハイパースペクトル画像(HSI)をキャプチャできます。
既存の復元方法は、3D HSIの構造的スペクトル空間的性質を完全に利用することはできない。
スナップショットハイパースペクトル画像の再構成精度を高めるために,高次テンソル最適化法を提案する。
論文 参考訳(メタデータ) (2021-01-22T02:54:55Z) - Non-local Meets Global: An Iterative Paradigm for Hyperspectral Image
Restoration [66.68541690283068]
ハイパースペクトル画像復元のための空間特性とスペクトル特性を組み合わせた統一パラダイムを提案する。
提案するパラダイムは,非局所空間デノゲーションと光計算の複雑さから,性能上の優位性を享受する。
HSI復調、圧縮再構成、塗装タスクの実験は、シミュレーションと実際のデータセットの両方で、その優位性を示している。
論文 参考訳(メタデータ) (2020-10-24T15:53:56Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation [105.33409035876691]
本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2020-04-30T11:52:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。