論文の概要: A Theory of Topological Derivatives for Inverse Rendering of Geometry
- arxiv url: http://arxiv.org/abs/2308.09865v1
- Date: Sat, 19 Aug 2023 00:55:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 19:39:23.759923
- Title: A Theory of Topological Derivatives for Inverse Rendering of Geometry
- Title(参考訳): 幾何学の逆レンダリングのための位相微分の理論
- Authors: Ishit Mehta, Manmohan Chandraker, Ravi Ramamoorthi
- Abstract要約: 我々は、位相微分を用いて離散的な位相変化を可能にする微分可能な曲面進化の理論的枠組みを導入する。
2次元の閉曲線と3次元の曲面を最適化して提案理論を検証し、現在の手法の限界について考察する。
- 参考スコア(独自算出の注目度): 87.49881303178061
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a theoretical framework for differentiable surface evolution
that allows discrete topology changes through the use of topological
derivatives for variational optimization of image functionals. While prior
methods for inverse rendering of geometry rely on silhouette gradients for
topology changes, such signals are sparse. In contrast, our theory derives
topological derivatives that relate the introduction of vanishing holes and
phases to changes in image intensity. As a result, we enable differentiable
shape perturbations in the form of hole or phase nucleation. We validate the
proposed theory with optimization of closed curves in 2D and surfaces in 3D to
lend insights into limitations of current methods and enable improved
applications such as image vectorization, vector-graphics generation from text
prompts, single-image reconstruction of shape ambigrams and multi-view 3D
reconstruction.
- Abstract(参考訳): 画像汎関数の変分最適化のために位相微分を用いて離散トポロジー変化を可能にする微分可能曲面進化の理論的枠組みを提案する。
幾何学の逆レンダリングの以前の方法は位相変化のシルエット勾配に依存するが、そのような信号はばらばらである。
対照的に、この理論は、消滅する穴と位相を画像強度の変化に関連付ける位相微分を導出する。
その結果、ホールや位相核生成の形で微分可能な形状摂動が可能となる。
本研究では,2次元の閉曲線と3次元の曲面を最適化して提案理論を検証し,現在の手法の限界を考察し,画像ベクトル化,テキストプロンプトからのベクトルグラフ生成,形状アンビグラムの単一画像再構成,マルチビュー3D再構成などの改良的な応用を可能にする。
関連論文リスト
- GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting [81.03553265684184]
単視点画像から詳細な3Dオブジェクトを再構成するフレームワークであるGeoGS3Dを紹介する。
本稿では,GDS(Gaussian Divergence Significance)という新しい指標を提案する。
実験により、GeoGS3Dはビュー間で高い一貫性を持つ画像を生成し、高品質な3Dオブジェクトを再構成することを示した。
論文 参考訳(メタデータ) (2024-03-15T12:24:36Z) - Physics-informed neural networks for transformed geometries and
manifolds [0.0]
本稿では,幾何学的変分を頑健に適合させるために,PINN内に幾何変換を統合する新しい手法を提案する。
従来のPINNに対して,特に幾何学的変動下での柔軟性の向上を実証する。
提案したフレームワークは、パラメータ化されたジオメトリ上でのディープ・ニューラル演算子のトレーニングの展望を示す。
論文 参考訳(メタデータ) (2023-11-27T15:47:33Z) - Deep neural networks on diffeomorphism groups for optimal shape
reparameterization [44.99833362998488]
基本微分同相の合成による配向保存微分同相の近似を構成するアルゴリズムを提案する。
このアルゴリズムはPyTorchを用いて実装され、非パラメータ化された曲線と曲面の両方に適用できる。
論文 参考訳(メタデータ) (2022-07-22T15:25:59Z) - A Level Set Theory for Neural Implicit Evolution under Explicit Flows [102.18622466770114]
暗黙の曲面をパラメータ化するコーディネートベースのニューラルネットワークは、幾何学の効率的な表現として登場した。
このような暗黙の面に三角形メッシュに対して定義された変形操作を適用することができるフレームワークを提案する。
提案手法は, 表面平滑化, 平均曲率流, 逆レンダリング, 暗黙的幾何によるユーザ定義編集など, 応用性の向上を示す。
論文 参考訳(メタデータ) (2022-04-14T17:59:39Z) - 3D Equivariant Graph Implicit Functions [51.5559264447605]
局所的詳細のモデリングを容易にする同変層を持つグラフ暗黙関数の新しいファミリを導入する。
提案手法は,ShapeNet再構成作業において既存の回転同変暗黙関数を0.69から0.89に改善する。
論文 参考訳(メタデータ) (2022-03-31T16:51:25Z) - Tensor Component Analysis for Interpreting the Latent Space of GANs [41.020230946351816]
本稿では,GANの潜在空間における解釈可能な方向を求める問題に対処する。
提案手法では,テンソルの個々のモードに対応する線形編集と,それらの間の乗法的相互作用をモデル化する非線形編集が可能である。
実験により, 前者は幾何に基づく変換から, 後者は拡張可能な変換を生成できることを示す。
論文 参考訳(メタデータ) (2021-11-23T09:14:39Z) - Disentangling Geometric Deformation Spaces in Generative Latent Shape
Models [5.582957809895198]
3Dオブジェクトの完全な表現には、解釈可能な方法で変形の空間を特徴づける必要がある。
本研究では,物体形状の空間を剛性方向,非剛性ポーズ,内在的な形状に分解する3次元形状の不整合の事前生成モデルを改善する。
得られたモデルは生の3D形状からトレーニングできる。
論文 参考訳(メタデータ) (2021-02-27T06:54:31Z) - ResNet-LDDMM: Advancing the LDDMM Framework Using Deep Residual Networks [86.37110868126548]
本研究では,eulerの離散化スキームに基づく非定常ode(フロー方程式)の解法として,深層残留ニューラルネットワークを用いた。
複雑なトポロジー保存変換の下での3次元形状の多種多様な登録問題について述べる。
論文 参考訳(メタデータ) (2021-02-16T04:07:13Z) - Understanding Graph Neural Networks with Generalized Geometric
Scattering Transforms [67.88675386638043]
散乱変換は、畳み込みニューラルネットワークのモデルとして機能する多層ウェーブレットベースのディープラーニングアーキテクチャである。
非対称ウェーブレットの非常に一般的なクラスに基づくグラフに対して、窓付きおよび非窓付き幾何散乱変換を導入する。
これらの非対称グラフ散乱変換は、対称グラフ散乱変換と多くの理論的保証を持つことを示す。
論文 参考訳(メタデータ) (2019-11-14T17:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。