論文の概要: The Role of AI in Human-AI Creative Writing for Hong Kong Secondary
Students
- arxiv url: http://arxiv.org/abs/2304.11276v1
- Date: Fri, 21 Apr 2023 23:50:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 19:24:59.496348
- Title: The Role of AI in Human-AI Creative Writing for Hong Kong Secondary
Students
- Title(参考訳): 香港中学生の人間-AI創造的執筆におけるAIの役割
- Authors: Hengky Susanto, David James Woo, and Kai Guo
- Abstract要約: 近年の自然言語処理の進歩は、人間のような言語を生成できる言語モデルの開発につながっている。
私たちの経験的発見は、学生作家がより創造的になるのを助けるために、言語モデルが異なる役割を担っていることを示している。
- 参考スコア(独自算出の注目度): 4.739597165434651
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The recent advancement in Natural Language Processing (NLP) capability has
led to the development of language models (e.g., ChatGPT) that is capable of
generating human-like language. In this study, we explore how language models
can be utilized to help the ideation aspect of creative writing. Our empirical
findings show that language models play different roles in helping student
writers to be more creative, such as the role of a collaborator, a provocateur,
etc
- Abstract(参考訳): 自然言語処理(NLP)能力の最近の進歩は、人間に似た言語を生成することができる言語モデル(例えば、ChatGPT)の開発につながっている。
本研究では,創造的執筆の思想的側面を支援するために,言語モデルをどのように活用できるかを考察する。
私たちの経験的発見は、言語モデルが、協力者やプロボケーターの役割など、学生作家の創造性を高める上で、異なる役割を担っていることを示している。
関連論文リスト
- "It was 80% me, 20% AI": Seeking Authenticity in Co-Writing with Large Language Models [97.22914355737676]
我々は、AIツールと共同で書き込む際に、著者が自分の真正な声を保存したいかどうか、どのように検討する。
本研究は,人間とAIの共創における真正性の概念を解明するものである。
読者の反応は、人間とAIの共著に対する関心が低かった。
論文 参考訳(メタデータ) (2024-11-20T04:42:32Z) - Evaluating Creative Short Story Generation in Humans and Large Language Models [0.7965327033045846]
大規模言語モデル(LLM)は、最近、高品質なストーリーを生成する能力を実証した。
LLMと日常の人々の短いストーリー生成において,創造性を体系的に分析する。
LLMはスタイリスティックな複雑なストーリーを生成できるが、平均的な人間作家に比べて創造性は低い傾向にある。
論文 参考訳(メタデータ) (2024-11-04T17:40:39Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
推論は人間の知性の本質的な要素であり、批判的に考える能力において基本的な役割を果たす。
自然言語処理における最近の進歩は、トランスフォーマーに基づく言語モデルの出現とともに、これらのモデルが推論能力を示す可能性を示唆している。
言語モデルにおける推論について議論が続いているが、これらのモデルが実際に推論できる程度に注目することは容易ではない。
論文 参考訳(メタデータ) (2024-10-07T02:31:47Z) - Purposeful remixing with generative AI: Constructing designer voice in multimodal composing [16.24460569356749]
本研究は, 生成型AIツールの使用が, 多モーダル執筆において, より一貫した音声構築に役立つかどうかを考察する。
この研究は、技術的柔軟性によって得られるように、AIによるマルチモーダル書き込みの意図的かつ非帰的な性質に光を当てている。
論文 参考訳(メタデータ) (2024-03-28T02:15:03Z) - SARD: A Human-AI Collaborative Story Generation [0.0]
本研究では,大規模言語モデルを用いたマルチチャプタストーリ生成のためのドラッグアンドドロップ型ビジュアルインタフェースであるSARDを提案する。
SARDのユーザビリティとその創造性に対する評価は、物語のノードベースの可視化は、著者がメンタルモデルを構築するのに役立つかもしれないが、著者にとって不必要な精神的オーバーヘッドを生じさせることを示している。
また、AIはストーリーの複雑さに関係なく、語彙的に多様性の低いストーリーを生成することもわかりました。
論文 参考訳(メタデータ) (2024-03-03T17:48:42Z) - Can AI Be as Creative as Humans? [84.43873277557852]
理論的には、AIは人間の創造者によって生成されたデータに適切に適合できるという条件の下で、人間と同じくらい創造的になれることを証明しています。
AIの創造性に関する議論は、十分な量のデータに適合する能力の問題に縮小されている。
論文 参考訳(メタデータ) (2024-01-03T08:49:12Z) - Language Models: A Guide for the Perplexed [51.88841610098437]
このチュートリアルは、言語モデルを学ぶ人と、興味を持ち、もっと学びたいと思う人とのギャップを狭めることを目的としています。
実験を通して学ぶことができる質問に焦点を当てた科学的視点を提供する。
言語モデルは、現在、その開発に繋がる研究の文脈に置かれています。
論文 参考訳(メタデータ) (2023-11-29T01:19:02Z) - Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Creative Writing with an AI-Powered Writing Assistant: Perspectives from
Professional Writers [9.120878749348986]
ニューラルネットワークモデルを用いた自然言語生成(NLG)は、AIによるクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいています。
ニューラルネットワークモデルを用いた自然言語生成の最近の進歩は、AIを使ったクリエイティブな記述ツールを構築するという目標に、これまで以上に近づいている。
論文 参考訳(メタデータ) (2022-11-09T17:00:56Z) - CoAuthor: Designing a Human-AI Collaborative Writing Dataset for
Exploring Language Model Capabilities [92.79451009324268]
我々は,GPT-3の創造的かつ議論的な記述を支援する能力を明らかにするために設計されたデータセットであるCoAuthorを提案する。
我々は、CoAuthorがGPT-3の言語、アイデア、コラボレーション機能に関する問題に対処できることを実証した。
インタラクション設計に関して,この作業がLMの約束や落とし穴に関して,より原則化された議論を促進する可能性について論じる。
論文 参考訳(メタデータ) (2022-01-18T07:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。