論文の概要: Positive AI: Key Challenges for Designing Wellbeing-aligned Artificial
Intelligence
- arxiv url: http://arxiv.org/abs/2304.12241v1
- Date: Wed, 12 Apr 2023 12:43:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-30 07:40:04.212585
- Title: Positive AI: Key Challenges for Designing Wellbeing-aligned Artificial
Intelligence
- Title(参考訳): 肯定的AI:ウェルビーイング・アライン・人工知能設計の鍵となる課題
- Authors: Willem van der Maden, Derek Lomas, Paul Hekkert
- Abstract要約: 我々は、AIをうまく活用することは、意識のある生物の幸福と調和することを構成すると論じている。
本稿では,知識不足に関連する12の課題について検討する。
私たちの議論は3つの重要な内容にまとめることができます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) is transforming the world as we know it,
implying that it is up to the current generation to use the technology for
''good.'' We argue that making good use of AI constitutes aligning it with the
wellbeing of conscious creatures. However, designing wellbeing-aligned AI
systems is difficult. In this article, we investigate a total of twelve
challenges that can be categorized as related to a lack of knowledge (how to
contextualize, operationalize, optimize, and design AI for wellbeing), and lack
of motivation (designing AI for wellbeing is seen as risky and unrewarding).
Our discussion can be summarized into three key takeaways: 1) our understanding
of the impact of systems on wellbeing should be advanced, 2) systems should be
designed to promote and sustain wellbeing intentionally, and 3), above all,
Positive AI starts with believing that we can change the world for the better
and that it is profitable.
- Abstract(参考訳): AI(Artificial Intelligence:人工知能)は、私たちが知っているように世界を変えつつある。それは、この技術を「良い」ために使うのが現在の世代次第であることを意味している。私たちは、AIをうまく活用することは、意識的な生物の幸福に合わせることを構成すると論じている。
しかし、健全なAIシステムの設計は困難である。
本稿では、知識の欠如(幸福のためにAIをコンテキスト化、運用、最適化、設計する方法)とモチベーションの欠如(幸福のためにAIを設計することはリスクが高く、後退していると見なされる)に関連する12の課題について調査する。
私たちの議論は、3つの重要な要約にまとめられる。
1) 幸福に対するシステムの影響について理解を深めるべきである。
2) システムは意図的に幸福を促進・維持するように設計されるべきである。3) 肯定的なaiは、世界をより良いものにし、利益を上げることができると信じることから始まる。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Rolling in the deep of cognitive and AI biases [1.556153237434314]
我々は、AIが設計、開発、デプロイされる状況とは切り離せない社会技術システムとして理解する必要があると論じる。
我々は、人間の認知バイアスがAIフェアネスの概観の中核となる急進的な新しい方法論に従うことで、この問題に対処する。
我々は、人間にAIバイアスを正当化する新しいマッピングを導入し、関連する公正度と相互依存を検出する。
論文 参考訳(メタデータ) (2024-07-30T21:34:04Z) - Lifelong learning challenges in the era of artificial intelligence: a computational thinking perspective [0.0]
人工知能(AI)の急速な進歩は、職場での人間とAIのコラボレーションにAIを活用するために必要な教育と労働力のスキルに大きな課題をもたらした。
本稿では,AI時代の生涯学習の課題を,計算的思考の観点から概観する。
論文 参考訳(メタデータ) (2024-05-30T08:46:11Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - AI Challenges for Society and Ethics [0.0]
人工知能はすでに、医療、金融、警察など、社会の重要な分野に応用され、影響を及ぼしている。
AIガバナンスの役割は、最終的に、AIにおけるイノベーションのメリットを実現しつつ、この危害のリスクを軽減するための実践的なステップを取ることです。
また、社会におけるAIの有益な利用がどのようなものかという規範的な質問を通じて考えることも必要だ。
論文 参考訳(メタデータ) (2022-06-22T13:33:11Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。