論文の概要: Interactive Greybox Penetration Testing for Cloud Access Control using IAM Modeling and Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2304.14540v5
- Date: Sat, 8 Jun 2024 16:23:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 05:48:34.444787
- Title: Interactive Greybox Penetration Testing for Cloud Access Control using IAM Modeling and Deep Reinforcement Learning
- Title(参考訳): IAMモデリングと深層強化学習を用いたクラウドアクセス制御のためのインタラクティブなGreybox浸透試験
- Authors: Yang Hu, Wenxi Wang, Sarfraz Khurshid, Mohit Tiwari,
- Abstract要約: IAM PE を検出するためのサードパーティサービスに対して,TAC と呼ばれる正確なグレーボックス浸透試験手法を提案する。
我々はまず,クエリから収集した部分情報に基づいて,TACが広範囲のIAM PEを検出可能なIAMモデリングを提案する。
合成タスクと実世界のタスクの両方の実験結果から、最先端のホワイトボックスアプローチと比較して、TACは競合的に偽陰性率の低いIAM PEを検出する。
- 参考スコア(独自算出の注目度): 6.350737151909975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identity and Access Management (IAM) is an access control service in cloud platforms. To securely manage cloud resources, customers need to configure IAM to specify the access control rules for their cloud organizations. However, incorrectly configured IAM can be exploited to cause a security attack such as privilege escalation (PE), leading to severe economic loss. To detect such PEs due to IAM misconfigurations, third-party cloud security services are commonly used. The state-of-the-art services apply whitebox penetration testing techniques, which require access to complete IAM configurations. However, the configurations can contain sensitive information. To prevent the disclosure of such information, customers need to manually anonymize the configuration. In this paper, we propose a precise greybox penetration testing approach called TAC for third-party services to detect IAM PEs. To mitigate the dual challenges of labor-intensive anonymization and potentially sensitive information disclosures, TAC interacts with customers by selectively querying only the essential information needed. Our key insight is that only a small fraction of information in the IAM configuration is relevant to the IAM PE detection. We first propose IAM modeling, enabling TAC to detect a broad class of IAM PEs based on the partial information collected from queries. To improve the efficiency and applicability of TAC, we aim to minimize interactions with customers by applying Reinforcement Learning (RL) with Graph Neural Networks (GNNs), allowing TAC to learn to make as few queries as possible. Experimental results on both synthetic and real-world tasks show that, compared to state-of-the-art whitebox approaches, TAC detects IAM PEs with competitively low false negative rates, employing a limited number of queries.
- Abstract(参考訳): IAM(Identity and Access Management)は、クラウドプラットフォームのアクセス管理サービスである。
クラウドリソースをセキュアに管理するには、クラウド組織に対するアクセス制御ルールを指定するためにIAMを設定する必要がある。
しかし、不正に設定されたIAMは、特権エスカレーション(PE)のようなセキュリティ攻撃を引き起こすために利用することができ、深刻な経済損失をもたらす。
IAM設定ミスによるそのようなPEを検出するために、サードパーティのクラウドセキュリティサービスが一般的に使用されている。
最先端のサービスは、完全なIAM構成へのアクセスを必要とするホワイトボックス浸透テスト技術を適用している。
しかし、構成には機密情報が含まれる。
このような情報の開示を防止するため、顧客は手動で構成を匿名化する必要がある。
本稿では,IDA PE を検出するためのサードパーティサービスに対して,TAC と呼ばれる正確なグレーボックス浸透試験手法を提案する。
労働集約的な匿名化と潜在的に敏感な情報開示の二重課題を軽減するため、TACは必要不可欠な情報のみを選択的にクエリすることで顧客と対話する。
我々の重要な洞察は、IAM PE検出に関係があるのは、IAM設定のわずかな情報のみであるということです。
我々はまず,クエリから収集した部分情報に基づいて,TACが広範囲のIAM PEを検出可能なIAMモデリングを提案する。
TACの効率性と適用性を向上させるため,グラフニューラルネットワーク(GNN)に強化学習(RL)を適用することにより,顧客とのインタラクションを最小限に抑えることを目的としている。
合成タスクと実世界のタスクの両方の実験結果は、最先端のホワイトボックスアプローチと比較して、TACは競合的に偽陰性率の低いIAM PEを検出し、限られた数のクエリを使用することを示した。
関連論文リスト
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing [5.644999288757871]
大規模言語モデル(LLM)は、強力なコード解析機能を示しているが、静的トレーニングデータとプライバシリスクは、その有効性を制限している。
LSASTは,LSLMをSASTスキャナと統合し,脆弱性検出を強化する手法である。
静的な脆弱性分析のための新しいベンチマークを設定し、堅牢でプライバシを重視したソリューションを提供しました。
論文 参考訳(メタデータ) (2024-09-24T04:42:43Z) - Industry Perception of Security Challenges with Identity Access Management Solutions [0.0]
本研究は、受益者の視点から、IAMソリューションに関する現在の認識とセキュリティ問題の概要を明らかにすることを目的としている。
クラウドベースのIAMソリューションの主な課題は、デフォルト設定、サービスアカウントのような非Human Identitiesの非Human Identitiesの管理、粗悪な証明書管理、粗悪なAPI設定、限定的なログ分析である。
対照的に、オンプレミスソリューションの課題は、マルチファクタ認証、安全でないデフォルト設定、IAMソリューションを安全に管理するために必要なスキルセットの欠如、パスワードポリシーの貧弱化、未パッチの脆弱性、シングルサインの妥協などである。
論文 参考訳(メタデータ) (2024-08-20T08:19:58Z) - CICAPT-IIOT: A provenance-based APT attack dataset for IIoT environment [1.841560106836332]
産業用モノのインターネット(Industrial Internet of Things, IIoT)は、スマートセンサー、高度な分析、産業プロセス内の堅牢な接続を統合する、変革的なパラダイムである。
Advanced Persistent Threats (APTs) は、そのステルス性、長く、標的とする性質のために特に重大な懸念を抱いている。
CICAPT-IIoTデータセットは、全体的なサイバーセキュリティ対策を開発するための基盤を提供する。
論文 参考訳(メタデータ) (2024-07-15T23:08:34Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning [1.9374282535132377]
悪意のあるサーバ(MS)攻撃のクライアント側検出性を初めて検討した。
これらの要件を満たす新しいアタックフレームワークであるSEERを提案する。
SEERは,最大512のバッチサイズであっても,現実的なネットワークの勾配からユーザデータを盗むことができることを示す。
論文 参考訳(メタデータ) (2023-06-05T16:29:54Z) - FLCert: Provably Secure Federated Learning against Poisoning Attacks [67.8846134295194]
FLCertは、有毒な攻撃に対して確実に安全であるアンサンブル・フェデレート学習フレームワークである。
実験の結果,テスト入力に対するFLCertで予測されたラベルは,有意な数の悪意のあるクライアントによって影響を受けないことが判明した。
論文 参考訳(メタデータ) (2022-10-02T17:50:04Z) - Using Constraint Programming and Graph Representation Learning for
Generating Interpretable Cloud Security Policies [12.43505973436359]
クラウドセキュリティは、IT管理者が適切に設定し定期的に更新する必要があるIDアクセス管理(IAM)ポリシーに依存している。
我々は制約プログラミング(CP)を用いて最適なIAMポリシーを生成する新しいフレームワークを開発する。
最適化されたIAMポリシは,8つの商用組織と合成インスタンスの実際のデータを用いたセキュリティ攻撃の影響を著しく低減することを示す。
論文 参考訳(メタデータ) (2022-05-02T22:15:07Z) - Attribute Inference Attack of Speech Emotion Recognition in Federated
Learning Settings [56.93025161787725]
Federated Learning(FL)は、クライアントをコーディネートして、ローカルデータを共有せずにモデルを協調的にトレーニングする分散機械学習パラダイムである。
本稿では,共有勾配やモデルパラメータからクライアントの機密属性情報を推測する属性推論攻撃フレームワークを提案する。
FLを用いて学習したSERシステムに対して,属性推論攻撃が達成可能であることを示す。
論文 参考訳(メタデータ) (2021-12-26T16:50:42Z) - Temporal Action Detection with Multi-level Supervision [116.55596693897388]
本稿では,ラベル付きデータとラベルなしデータを組み合わせたSemi-supervised Action Detection (SSAD)タスクを紹介する。
半教師付き分類タスクから直接適応したSSADベースラインの異なるタイプのエラーを解析する。
我々は,弱いラベル付きデータをSSADに組み込んで,3段階の監視レベルを持つOmni-supervised Action Detection (OSAD)を提案する。
論文 参考訳(メタデータ) (2020-11-24T04:45:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。