論文の概要: Efficient IAM Greybox Penetration Testing
- arxiv url: http://arxiv.org/abs/2304.14540v7
- Date: Wed, 12 Feb 2025 16:35:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:35:13.700632
- Title: Efficient IAM Greybox Penetration Testing
- Title(参考訳): 効率的なIAMグレーボックス浸透試験
- Authors: Yang Hu, Wenxi Wang, Sarfraz Khurshid, Mohit Tiwari,
- Abstract要約: IAMは特権エスカレーション(PE)攻撃を招き、経済的に大きな損失をもたらす可能性がある。
サードパーティのクラウドセキュリティサービスは、ホワイトボックスの侵入テストを使用してこのような問題を検出する。
IAM PEを効率よく検出するための、サードパーティサービスのための最初のグレーボックス浸透試験手法であるTACを導入する。
- 参考スコア(独自算出の注目度): 6.350737151909975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identity and Access Management (IAM) is an access control service in cloud platforms. To securely manage cloud resources, customers need to configure IAM to specify the access control rules for their cloud organizations. However, misconfigured IAM can lead to privilege escalation (PE) attacks, causing significant economic loss. Third-party cloud security services detect such issues using whitebox penetration testing, which requires full access to IAM configurations. However, since these configurations often contain sensitive data, customers must manually anonymize them to protect their privacy. To address the dual challenges of anonymization and data privacy, we introduce TAC, the first greybox penetration testing approach for third-party services to efficiently detect IAM PEs. Instead of requiring customers to blindly anonymize their entire IAM configuration, TAC intelligently interacts with customers by querying only a small fraction of information in the IAM configuration that is necessary for PE detection. To achieve this, TAC integrates two key innovations: (1) a comprehensive IAM modeling approach to detect a wide range of IAM PEs using partial information collected from query responses, and (2) a query optimization mechanism leveraging Reinforcement Learning (RL) and Graph Neural Networks (GNNs) to minimize customer inputs. Additionally, to address the scarcity of real-world IAM PE datasets, we introduce IAMVulGen, a synthesizer that generates a large number of diverse IAM PEs that mimic real-world scenarios. Experimental results on both synthetic and real-world benchmarks show that TAC, as a greybox approach, achieves competitively low and, in some cases, significantly lower false negative rates than state-ofthe-art whitebox approaches, while utilizing a limited number of queries.
- Abstract(参考訳): IAM(Identity and Access Management)は、クラウドプラットフォームのアクセス管理サービスである。
クラウドリソースをセキュアに管理するには、クラウド組織に対するアクセス制御ルールを指定するためにIAMを設定する必要がある。
しかし、不適切に設定されたIAMは特権エスカレーション(PE)攻撃を引き起こす可能性があり、経済的に大きな損失をもたらす。
サードパーティのクラウドセキュリティサービスは、IAM設定へのフルアクセスを必要とするホワイトボックスの浸透テストを使用して、このような問題を検出する。
しかし、これらの構成はしばしば機密データを含んでいるため、顧客はプライバシーを保護するために手動で匿名化する必要がある。
匿名化とデータプライバシという2つの課題に対処するために、私たちは、IAM PEを効率的に検出する、サードパーティサービスのための最初のグレーボックス浸透テストアプローチであるTACを紹介します。
顧客がIAM設定全体を盲目的に匿名化するのではなく、TACはPE検出に必要なIAM設定のわずかな情報だけをクエリすることで、顧客とインテリジェントに対話する。
これを実現するためにTACは,(1)クエリ応答から収集した部分情報を用いて広範囲のIAM PEを検出するための包括的なIAMモデリングアプローチ,(2)強化学習(RL)とグラフニューラルネットワーク(GNN)を活用して顧客の入力を最小限に抑えるクエリ最適化機構,の2つの重要なイノベーションを統合する。
さらに、実世界のIAM PEデータセットの不足に対処するため、実世界のシナリオを模倣した多種多様なIAM PEを生成するシンセサイザーであるIAMVulGenを導入する。
合成および実世界のベンチマークによる実験結果から、TACはグレーボックスアプローチとして競合的に低く、場合によっては最先端のホワイトボックスアプローチよりも偽陰性率を著しく低くし、限られた数のクエリを活用していることが示された。
関連論文リスト
- Privacy-Preserving Federated Embedding Learning for Localized Retrieval-Augmented Generation [60.81109086640437]
我々はFedE4RAG(Federated Retrieval-Augmented Generation)と呼ばれる新しいフレームワークを提案する。
FedE4RAGはクライアント側RAG検索モデルの協調トレーニングを容易にする。
モデルパラメータの保護にフェデレート学習の準同型暗号化を適用する。
論文 参考訳(メタデータ) (2025-04-27T04:26:02Z) - MCP Guardian: A Security-First Layer for Safeguarding MCP-Based AI System [0.0]
MCPガーディアンは、認証、レート制限、ロギング、トレース、Web Application Firewall(WAF)スキャンによるMPPベースの通信を強化するフレームワークである。
弊社のアプローチは、AIアシスタントのためのセキュアでスケーラブルなデータアクセスを促進する。
論文 参考訳(メタデータ) (2025-04-17T08:49:10Z) - Fundamental Limits of Hierarchical Secure Aggregation with Cyclic User Association [93.46811590752814]
階層的なセキュアな集約は、連合学習によって動機づけられる。
本稿では,各ユーザが連続する$B$のリレーに接続される循環型アソシエーションパターンを用いたHSAについて考察する。
本稿では、勾配符号化にインスパイアされた入力に対するメッセージ設計を含む効率的なアグリゲーション手法を提案する。
論文 参考訳(メタデータ) (2025-03-06T15:53:37Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated Learning(FL)は、分散プライベートデータセットを使用して、トレーニング済みの大規模言語モデル(LLM)を微調整するための、プライバシ保護ソリューションを提供する。
本稿では、知識蒸留(KD)とスプリットラーニング(SL)を統合し、これらの問題を緩和する3つの先進的連合LLM(FedLLM)フレームワークの比較分析を行う。
論文 参考訳(メタデータ) (2025-01-08T11:37:06Z) - Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment [59.61554561979589]
エッジコンピューティングは、時間に敏感なシナリオでディープラーニングベースのオブジェクト検出をデプロイするための重要なパラダイムとして登場した。
既存のエッジ検出手法では、軽量モデルによる検出精度のバランスの難しさ、適応性の制限、現実の検証の不十分といった課題に直面している。
本稿では,汎用的なプラグイン・アンド・プレイコンポーネントを用いてエッジ環境にオブジェクト検出モデルを適用するエッジ検出ツールボックス(ED-TOOLBOX)を提案する。
論文 参考訳(メタデータ) (2024-12-24T07:28:10Z) - AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - Boosting Cybersecurity Vulnerability Scanning based on LLM-supported Static Application Security Testing [5.644999288757871]
大規模言語モデル(LLM)は、強力なコード解析機能を示しているが、静的トレーニングデータとプライバシリスクは、その有効性を制限している。
LSASTは,LSLMをSASTスキャナと統合し,脆弱性検出を強化する手法である。
静的な脆弱性分析のための新しいベンチマークを設定し、堅牢でプライバシを重視したソリューションを提供しました。
論文 参考訳(メタデータ) (2024-09-24T04:42:43Z) - Industry Perception of Security Challenges with Identity Access Management Solutions [0.0]
本研究は、受益者の視点から、IAMソリューションに関する現在の認識とセキュリティ問題の概要を明らかにすることを目的としている。
クラウドベースのIAMソリューションの主な課題は、デフォルト設定、サービスアカウントのような非Human Identitiesの非Human Identitiesの管理、粗悪な証明書管理、粗悪なAPI設定、限定的なログ分析である。
対照的に、オンプレミスソリューションの課題は、マルチファクタ認証、安全でないデフォルト設定、IAMソリューションを安全に管理するために必要なスキルセットの欠如、パスワードポリシーの貧弱化、未パッチの脆弱性、シングルサインの妥協などである。
論文 参考訳(メタデータ) (2024-08-20T08:19:58Z) - CICAPT-IIOT: A provenance-based APT attack dataset for IIoT environment [1.841560106836332]
産業用モノのインターネット(Industrial Internet of Things, IIoT)は、スマートセンサー、高度な分析、産業プロセス内の堅牢な接続を統合する、変革的なパラダイムである。
Advanced Persistent Threats (APTs) は、そのステルス性、長く、標的とする性質のために特に重大な懸念を抱いている。
CICAPT-IIoTデータセットは、全体的なサイバーセキュリティ対策を開発するための基盤を提供する。
論文 参考訳(メタデータ) (2024-07-15T23:08:34Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
フェデレートラーニング(FL)は、大規模分散ユーザデータを活用する可能性から、最近大きな勢いを増している。
送信されたモデル更新は、センシティブなユーザ情報をリークする可能性があり、ローカルなトレーニングプロセスの集中的な制御の欠如は、モデル更新に対する悪意のある操作の影響を受けやすいグローバルモデルを残します。
我々は、Lagrange符号化計算と分散ゼロ知識証明を利用した汎用フレームワークPriRoAggを開発し、集約されたプライバシを満たすとともに、幅広いロバストな集約アルゴリズムを実行する。
論文 参考訳(メタデータ) (2024-07-12T03:18:08Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
フェデレートラーニング(FL)により、分散参加者は、データを中央サーバに直接共有することなく、グローバルモデルをトレーニングできる。
近年の研究では、FLは元のトレーニングサンプルの再構築を目的とした勾配反転攻撃(GIA)に弱いことが判明している。
本稿では,クライアント側から起動可能な新たな攻撃手法であるクライアント側中毒性グレーディエント・インバージョン(CGI)を提案する。
論文 参考訳(メタデータ) (2023-09-14T03:48:27Z) - Adapter-based Selective Knowledge Distillation for Federated
Multi-domain Meeting Summarization [36.916155654985936]
会議要約は、利用者に凝縮した要約を提供するための有望な手法として登場した。
本稿では,適応型選択的知識蒸留法(AdaFedSelecKD)を提案する。
論文 参考訳(メタデータ) (2023-08-07T03:34:01Z) - Hiding in Plain Sight: Disguising Data Stealing Attacks in Federated Learning [1.9374282535132377]
悪意のあるサーバ(MS)攻撃のクライアント側検出性を初めて検討した。
これらの要件を満たす新しいアタックフレームワークであるSEERを提案する。
SEERは,最大512のバッチサイズであっても,現実的なネットワークの勾配からユーザデータを盗むことができることを示す。
論文 参考訳(メタデータ) (2023-06-05T16:29:54Z) - FLCert: Provably Secure Federated Learning against Poisoning Attacks [67.8846134295194]
FLCertは、有毒な攻撃に対して確実に安全であるアンサンブル・フェデレート学習フレームワークである。
実験の結果,テスト入力に対するFLCertで予測されたラベルは,有意な数の悪意のあるクライアントによって影響を受けないことが判明した。
論文 参考訳(メタデータ) (2022-10-02T17:50:04Z) - Using Constraint Programming and Graph Representation Learning for
Generating Interpretable Cloud Security Policies [12.43505973436359]
クラウドセキュリティは、IT管理者が適切に設定し定期的に更新する必要があるIDアクセス管理(IAM)ポリシーに依存している。
我々は制約プログラミング(CP)を用いて最適なIAMポリシーを生成する新しいフレームワークを開発する。
最適化されたIAMポリシは,8つの商用組織と合成インスタンスの実際のデータを用いたセキュリティ攻撃の影響を著しく低減することを示す。
論文 参考訳(メタデータ) (2022-05-02T22:15:07Z) - Attribute Inference Attack of Speech Emotion Recognition in Federated
Learning Settings [56.93025161787725]
Federated Learning(FL)は、クライアントをコーディネートして、ローカルデータを共有せずにモデルを協調的にトレーニングする分散機械学習パラダイムである。
本稿では,共有勾配やモデルパラメータからクライアントの機密属性情報を推測する属性推論攻撃フレームワークを提案する。
FLを用いて学習したSERシステムに対して,属性推論攻撃が達成可能であることを示す。
論文 参考訳(メタデータ) (2021-12-26T16:50:42Z) - Federated Multi-Target Domain Adaptation [99.93375364579484]
フェデレートされた学習手法により、プライバシを保護しながら、分散ユーザデータ上で機械学習モデルをトレーニングすることが可能になります。
分散クライアントデータがラベル付けされず、集中型ラベル付きデータセットがサーバ上で利用可能となる、より実用的なシナリオを考えます。
本稿では,新しい課題に対処する効果的なDualAdapt法を提案する。
論文 参考訳(メタデータ) (2021-08-17T17:53:05Z) - Temporal Action Detection with Multi-level Supervision [116.55596693897388]
本稿では,ラベル付きデータとラベルなしデータを組み合わせたSemi-supervised Action Detection (SSAD)タスクを紹介する。
半教師付き分類タスクから直接適応したSSADベースラインの異なるタイプのエラーを解析する。
我々は,弱いラベル付きデータをSSADに組み込んで,3段階の監視レベルを持つOmni-supervised Action Detection (OSAD)を提案する。
論文 参考訳(メタデータ) (2020-11-24T04:45:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。