論文の概要: Deconstructing Student Perceptions of Generative AI (GenAI) through an
Expectancy Value Theory (EVT)-based Instrument
- arxiv url: http://arxiv.org/abs/2305.01186v1
- Date: Tue, 2 May 2023 03:40:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-03 15:23:45.204979
- Title: Deconstructing Student Perceptions of Generative AI (GenAI) through an
Expectancy Value Theory (EVT)-based Instrument
- Title(参考訳): 期待値理論(EVT)に基づく生成AI(GenAI)の学生認識の再構築
- Authors: Cecilia Ka Yuk Chan, Wenxin Zhou
- Abstract要約: 本研究は,高校生の認知と生成型AIを高等教育に活用する意図との関係について検討する。
学生のジェネレーティブAI, 知覚価値, 知覚コストに関する知識を測定するために, 質問紙調査を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study examines the relationship between student perceptions and their
intention to use generative AI in higher education. Drawing on Expectancy-Value
Theory (EVT), a questionnaire was developed to measure students' knowledge of
generative AI, perceived value, and perceived cost. A sample of 405 students
participated in the study, and confirmatory factor analysis was used to
validate the constructs. The results indicate a strong positive correlation
between perceived value and intention to use generative AI, and a weak negative
correlation between perceived cost and intention to use. As we continue to
explore the implications of generative AI in education and other domains, it is
crucial to carefully consider the potential long-term consequences and the
ethical dilemmas that may arise from widespread adoption.
- Abstract(参考訳): 本研究は,高等教育における生徒の知覚と生成型ai活用の意図との関係について検討する。
予測値理論 (EVT) に基づいて, 学生の生成的AI, 知覚的価値, 知覚的コストに関する知識を測定する質問紙を作成した。
この研究には405人の学生のサンプルが参加し、確認因子分析を用いて構造を検証した。
その結果、認識された価値と生成的AIの使用意図との間には強い正の相関がみられ、認識されたコストと使用意図との間には弱い負の相関がみられた。
教育等における生成的aiの意義を探究し続けていく中で、普及によって生じる潜在的な長期的影響と倫理的ジレンマを慎重に検討することが重要である。
関連論文リスト
- Perceptions of Discriminatory Decisions of Artificial Intelligence: Unpacking the Role of Individual Characteristics [0.0]
個人差(デジタル自己効力性、技術的知識、平等への信念、政治的イデオロギー)は、AIの成果に対する認識と関連している。
デジタル自己効力と技術的知識は、AIに対する態度と肯定的に関連している。
リベラルイデオロギーは、結果信頼、より否定的な感情、より大きな懐疑主義と負の関連がある。
論文 参考訳(メタデータ) (2024-10-17T06:18:26Z) - Predicting the Impact of Generative AI Using an Agent-Based Model [0.0]
生成人工知能(AI)システムは、人間の創造性を模倣するコンテンツを自律的に生成することで産業を変革した。
本稿ではエージェント・ベース・モデリング(ABM)を用いてこれらの意味を探索する。
ABMは個人、ビジネス、政府エージェントを統合し、教育、スキル獲得、AIの採用、規制対応などのダイナミクスをシミュレートする。
論文 参考訳(メタデータ) (2024-08-30T13:13:56Z) - Measuring Human Contribution in AI-Assisted Content Generation [68.03658922067487]
本研究は,AIによるコンテンツ生成における人間の貢献度を測定する研究課題を提起する。
人間の入力とAI支援出力の自己情報に対する相互情報を計算することにより、コンテンツ生成における人間の比例情報貢献を定量化する。
論文 参考訳(メタデータ) (2024-08-27T05:56:04Z) - A Meta-analysis of College Students' Intention to Use Generative Artificial Intelligence [5.13644976086965]
本研究では,27の実証的研究のメタ分析を行った。
主な変数は、GenAIを使用する学生の行動意図と強く相関している。
ジェンダーは、特に、学生のGenAIの使用に対する行動意図に対する態度を緩やかにしていただけである。
論文 参考訳(メタデータ) (2024-08-25T15:46:57Z) - Generative AI Adoption in Classroom in Context of Technology Acceptance Model (TAM) and the Innovation Diffusion Theory (IDT) [1.9659095632676098]
本研究は, 教育者の認知とGenAI, LLMの受容に影響を及ぼす要因を明らかにすることを目的とする。
本研究は,GenAIツールの有用性と,その受容性との間に強い正の相関関係があることを明らかにする。
使用の容易さが重要な要因として現れたが、それより少なかったため、受け入れに影響が及んだ。
論文 参考訳(メタデータ) (2024-03-29T22:41:51Z) - Generative AI in Education: A Study of Educators' Awareness, Sentiments, and Influencing Factors [2.217351976766501]
本研究は,AI言語モデルに対する教員の経験と態度について考察する。
学習スタイルと生成AIに対する態度の相関は見つからない。
CS教育者は、生成するAIツールの技術的理解にはるかに自信を持っているが、AI生成された仕事を検出する能力にこれ以上自信がない。
論文 参考訳(メタデータ) (2024-03-22T19:21:29Z) - Evaluating and Optimizing Educational Content with Large Language Model Judgments [52.33701672559594]
言語モデル(LM)を教育専門家として活用し,学習結果に対する様々な指導の影響を評価する。
本稿では,一方のLMが他方のLMの判断を報酬関数として利用して命令材料を生成する命令最適化手法を提案する。
ヒトの教師によるこれらのLM生成ワークシートの評価は、LM判定と人間の教師の嗜好との間に有意な整合性を示す。
論文 参考訳(メタデータ) (2024-03-05T09:09:15Z) - Evaluating the Utility of Model Explanations for Model Development [54.23538543168767]
機械学習モデル構築の実践シナリオにおいて、説明が人間の意思決定を改善するかどうかを評価する。
驚いたことに、サリエンシマップが提供されたとき、タスクが大幅に改善されたという証拠は見つからなかった。
以上の結果から,サリエンシに基づく説明における誤解の可能性と有用性について注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2023-12-10T23:13:23Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Cognitive Diagnosis with Explicit Student Vector Estimation and
Unsupervised Question Matrix Learning [53.79108239032941]
本研究では,DINA の学生ベクトルを推定するための明示的な学生ベクトル推定法を提案する。
また,Q行列を自動的にラベル付けする双方向キャリブレーションアルゴリズム (HBCA) を提案する。
2つの実世界のデータセットによる実験結果から,ESVE-DINAはDINAモデルよりも精度が高く,HBCAによって自動的にラベル付けされたQ行列は,手動でラベル付けしたQ行列に匹敵する性能が得られることが示された。
論文 参考訳(メタデータ) (2022-03-01T03:53:19Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。