論文の概要: On the properties of Gaussian Copula Mixture Models
- arxiv url: http://arxiv.org/abs/2305.01479v2
- Date: Wed, 24 May 2023 01:41:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 01:12:52.631351
- Title: On the properties of Gaussian Copula Mixture Models
- Title(参考訳): ガウス型コプラ混合モデルの性質について
- Authors: Ke Wan, Alain Kornhauser
- Abstract要約: 本稿では,GCMMの数学的定義を示し,その可能性関数の性質について検討する。
本論文では,コプラの混合に対するパラメータを推定するための拡張期待アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper investigates Gaussian copula mixture models (GCMM), which are an
extension of Gaussian mixture models (GMM) that incorporate copula concepts.
The paper presents the mathematical definition of GCMM and explores the
properties of its likelihood function. Additionally, the paper proposes
extended Expectation Maximum algorithms to estimate parameters for the mixture
of copulas. The marginal distributions corresponding to each component are
estimated separately using nonparametric statistical methods. In the
experiment, GCMM demonstrates improved goodness-of-fitting compared to GMM when
using the same number of clusters. Furthermore, GCMM has the ability to
leverage un-synchronized data across dimensions for more comprehensive data
analysis.
- Abstract(参考訳): 本稿では,コプラ概念を含むガウス混合モデル(gmm)の拡張であるガウスコプラ混合モデル(gcmm)について検討する。
本稿では,GCMMの数学的定義を示し,その可能性関数の性質について検討する。
さらに,コプラ混合物のパラメータを推定するための拡張期待最大アルゴリズムを提案する。
各成分に対応する限界分布を非パラメトリック統計法を用いて別々に推定する。
実験では、GCMMは同じ数のクラスタを使用する場合、GCMMと比較して適合性が改善された。
さらに、GCMMは、より包括的なデータ分析のために、次元にわたって非同期データを活用できる。
関連論文リスト
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Finite Mixtures of Multivariate Poisson-Log Normal Factor Analyzers for
Clustering Count Data [0.8499685241219366]
因子分析モデルの混合に基づく8種類の擬似混合モデルについて紹介する。
提案モデルはRNAシークエンシング研究から得られた離散的なデータをクラスタリングする文脈において探索される。
論文 参考訳(メタデータ) (2023-11-13T21:23:15Z) - Heterogeneous Multi-Task Gaussian Cox Processes [61.67344039414193]
異種相関タスクを共同でモデル化するためのマルチタスクガウスコックスプロセスの新たな拡張を提案する。
MOGPは、分類、回帰、ポイントプロセスタスクの専用可能性のパラメータに先行して、異種タスク間の情報の共有を容易にする。
モデルパラメータを推定するための閉形式反復更新を実現する平均場近似を導出する。
論文 参考訳(メタデータ) (2023-08-29T15:01:01Z) - A Robust and Flexible EM Algorithm for Mixtures of Elliptical
Distributions with Missing Data [71.9573352891936]
本稿では、ノイズや非ガウス的なデータに対するデータ計算の欠如に対処する。
楕円分布と潜在的な欠落データを扱う特性を混合した新しいEMアルゴリズムについて検討した。
合成データの実験的結果は,提案アルゴリズムが外れ値に対して頑健であり,非ガウスデータで使用可能であることを示す。
論文 参考訳(メタデータ) (2022-01-28T10:01:37Z) - Image Modeling with Deep Convolutional Gaussian Mixture Models [79.0660895390689]
画像の記述と生成に適したGMM(Deep Hierarchical Gaussian Mixture Models)の新しい定式化を紹介します。
DCGMMは、畳み込みとプーリング操作によってリンクされた複数のGMM層の積み重ねたアーキテクチャによってこれを回避している。
dcgmmsでシャープな画像を生成するために,畳み込みやプーリングなどの非可逆操作をサンプリングする新しい勾配に基づく手法を提案する。
MNISTとFashionMNISTのデータセットに基づいて,クラスタリング,サンプリング,外乱検出において,フラットなGMMよりも優れていることを示すことで,DCGMMsモデルを検証した。
論文 参考訳(メタデータ) (2021-04-19T12:08:53Z) - EGMM: an Evidential Version of the Gaussian Mixture Model for Clustering [22.586481334904793]
本稿では,信念関数の理論的枠組みにおいて,EGMM(evidential GMM)と呼ばれるモデルに基づくクラスタリングアルゴリズムを提案する。
EGMMのパラメータは、特別に設計された期待最大化(EM)アルゴリズムによって推定される。
提案したEGMMは従来のGMMと同じくらい単純であるが,検討されたデータセットに対して,より情報に富む明確な分割を生成することができる。
論文 参考訳(メタデータ) (2020-10-03T11:59:07Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
我々は,ベイズクラスタリングモデルに対するMCMCアルゴリズムの出力を要約するための新しいアプローチを提案するために,後部類似性行列(PSM)の概念を構築した。
我々の研究の重要な貢献は、PSMが正の半定値であり、したがって確率的に動機付けられたカーネル行列を定義するのに使用できることである。
論文 参考訳(メタデータ) (2020-09-27T14:16:14Z) - Clustering of non-Gaussian data by variational Bayes for normal inverse
Gaussian mixture models [0.0]
実際の状況では、重い尾を持つ非ガウス的データや非対称なデータが多く存在する。
NIG混合モデルでは、期待最大化法と変分ベイズアルゴリズムの両方が提案されている。
NIG混合のための別のVBアルゴリズムを提案し、欠点を改善する。
また,クラスタ数決定の難しさを克服するため,ディリクレプロセス混合モデルの拡張も提案する。
論文 参考訳(メタデータ) (2020-09-13T14:13:27Z) - Consistent Estimation of Identifiable Nonparametric Mixture Models from
Grouped Observations [84.81435917024983]
この研究は、グループ化された観測から任意の同定可能な混合モデルを一貫して推定するアルゴリズムを提案する。
ペア化された観測のために実践的な実装が提供され、アプローチは既存の手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-12T20:44:22Z) - Handling missing data in model-based clustering [0.0]
欠損データの存在下でガウス混合体を適合させる2つの方法を提案する。
どちらの手法もデータ拡張のためにモンテカルロ予測最大化アルゴリズムの変種を用いる。
提案手法はクラスタ同定と密度推定の両面で多重計算手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-06-04T15:36:31Z) - Projection pursuit based on Gaussian mixtures and evolutionary
algorithms [0.0]
ガウス混合モデル(GMM)に基づく投影探索(PP)アルゴリズムを提案する。
PPに対するこの半パラメトリックアプローチは柔軟であり、高い情報的構造を検出できることを示す。
提案手法の性能は人工データセットと実データセットの両方で示される。
論文 参考訳(メタデータ) (2019-12-27T10:25:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。