Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell
Bioreactors
- URL: http://arxiv.org/abs/2305.03257v1
- Date: Fri, 5 May 2023 03:09:33 GMT
- Title: Data-driven and Physics Informed Modelling of Chinese Hamster Ovary Cell
Bioreactors
- Authors: Tianqi Cui, Tom S. Bertalan, Nelson Ndahiro, Pratik Khare, Michael
Betenbaugh, Costas Maranas, Ioannis G. Kevrekidis
- Abstract summary: We propose a data-driven hybrid model to learn models of the dynamical evolution of Chinese Hamster Ovary cell bioreactors from process data.
We encode the convex optimization step of the overdetermined metabolic biophysical system as a differentiable, feed-forward layer into our architectures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fed-batch culture is an established operation mode for the production of
biologics using mammalian cell cultures. Quantitative modeling integrates both
kinetics for some key reaction steps and optimization-driven metabolic flux
allocation, using flux balance analysis; this is known to lead to certain
mathematical inconsistencies. Here, we propose a physically-informed
data-driven hybrid model (a "gray box") to learn models of the dynamical
evolution of Chinese Hamster Ovary (CHO) cell bioreactors from process data.
The approach incorporates physical laws (e.g. mass balances) as well as kinetic
expressions for metabolic fluxes. Machine learning (ML) is then used to (a)
directly learn evolution equations (black-box modelling); (b) recover unknown
physical parameters ("white-box" parameter fitting) or -- importantly -- (c)
learn partially unknown kinetic expressions (gray-box modelling). We encode the
convex optimization step of the overdetermined metabolic biophysical system as
a differentiable, feed-forward layer into our architectures, connecting partial
physical knowledge with data-driven machine learning.
Related papers
- Omics-driven hybrid dynamic modeling of bioprocesses with uncertainty estimation [0.0]
This work presents an omics-driven modeling pipeline that integrates machine-learning tools.
Random forests and permutation feature importance are proposed to mine omics datasets.
Continuous and differentiable machine-learning functions can be trained to link the reduced omics feature set to key components of the dynamic model.
arXiv Detail & Related papers (2024-10-24T15:50:35Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
We integrate a musculoskeletal system with a learnable parametric hand model, MANO, to create MS-MANO.
This model emulates the dynamics of muscles and tendons to drive the skeletal system, imposing physiologically realistic constraints on the resulting torque trajectories.
We also propose a simulation-in-the-loop pose refinement framework, BioPR, that refines the initial estimated pose through a multi-layer perceptron network.
arXiv Detail & Related papers (2024-04-16T02:18:18Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - AI-Aristotle: A Physics-Informed framework for Systems Biology Gray-Box
Identification [1.8434042562191815]
We present a new framework for parameter estimation and missing physics identification (gray-box) in Systems Biology.
The proposed framework -- named AI-Aristotle -- combines eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs)
We test the accuracy, speed, flexibility and robustness of AI-Aristotle based on two benchmark problems in Systems Biology.
arXiv Detail & Related papers (2023-09-29T14:45:51Z) - The bionic neural network for external simulation of human locomotor
system [2.6311880922890842]
This paper proposes a physics-informed deep learning method based on musculoskeletal (MSK) modeling to predict joint motion and muscle forces.
The method can effectively identify subject-specific MSK physiological parameters and the trained physics-informed forward-dynamics surrogate yields accurate motion and muscle forces predictions.
arXiv Detail & Related papers (2023-09-11T23:02:56Z) - A Physics-Informed Low-Shot Learning For sEMG-Based Estimation of Muscle
Force and Joint Kinematics [4.878073267556235]
Muscle force and joint kinematics estimation from surface electromyography (sEMG) are essential for real-time biomechanical analysis.
Recent advances in deep neural networks (DNNs) have shown the potential to improve biomechanical analysis in a fully automated and reproducible manner.
This paper presents a novel physics-informed low-shot learning method for sEMG-based estimation of muscle force and joint kinematics.
arXiv Detail & Related papers (2023-07-08T23:01:12Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Inference of cell dynamics on perturbation data using adjoint
sensitivity [4.606583317143614]
Data-driven dynamic models of cell biology can be used to predict cell response to unseen perturbations.
Recent work had demonstrated the derivation of interpretable models with explicit interaction terms.
This work aims to extend the range of applicability of this model inference approach to a diversity of biological systems.
arXiv Detail & Related papers (2021-04-13T19:15:56Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.