Deep Labeling of fMRI Brain Networks
- URL: http://arxiv.org/abs/2305.03814v1
- Date: Fri, 5 May 2023 19:42:11 GMT
- Title: Deep Labeling of fMRI Brain Networks
- Authors: Ammar Ahmed Pallikonda Latheef (1), Sejal Ghate (2), Zhipeng Hui (1),
Alberto Santamaria-Pang (3), Ivan Tarapov (3), Haris I Sair (4 and 5), and
Craig K Jones (1, 4 and 5) ((1) Department of Computer Science, Johns Hopkins
University, (2) Department of Biomedical Engineering, Johns Hopkins
University, (3) Health AI, Microsoft, Redmond Washington, (4) Department of
Radiology and Radiological Science, Johns Hopkins School of Medicine, (5)
Malone Center for Engineering in Healthcare, Johns Hopkins University)
- Abstract summary: Resting State Networks (RSNs) of the brain extracted from Resting State functional Magnetic Resonance Imaging (RS-fMRI) are used in the pre-surgical planning to guide the neurosurgeon.
There is a lack of efficient and standardized methods to be used in clinical acquisitions.
We propose an accurate, fast, and lightweight deep learning approach to label RSNs.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Resting State Networks (RSNs) of the brain extracted from Resting State
functional Magnetic Resonance Imaging (RS-fMRI) are used in the pre-surgical
planning to guide the neurosurgeon. This is difficult, though, as expert
knowledge is required to label each of the RSNs. There is a lack of efficient
and standardized methods to be used in clinical workflows. Additionally, these
methods need to be generalizable since the method needs to work well regardless
of the acquisition technique. We propose an accurate, fast, and lightweight
deep learning approach to label RSNs. Group Independent Component Analysis
(ICA) was used to extract large scale functional connectivity patterns in the
cohort and dual regression was used to back project them on individual subject
RSNs. We compare a Multi-Layer Perceptron (MLP) based method with 2D and 3D
Convolutional Neural Networks (CNNs) and find that the MLP is faster and more
accurate. The MLP method performs as good or better than other works despite
its compact size. We prove the generalizability of our method by showing that
the MLP performs at 100% accuracy in the holdout dataset and 98.3% accuracy in
three other sites' fMRI acquisitions.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - ACTION: Augmentation and Computation Toolbox for Brain Network Analysis with Functional MRI [28.639321546348654]
Action is a Python-based and cross-platform toolbox for fMRI analysis.
It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation.
It supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data.
arXiv Detail & Related papers (2024-05-10T01:45:09Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Lightweight 3D Convolutional Neural Network for Schizophrenia diagnosis
using MRI Images and Ensemble Bagging Classifier [1.487444917213389]
This paper proposed a lightweight 3D convolutional neural network (CNN) based framework for schizophrenia diagnosis using MRI images.
The model achieves the highest accuracy 92.22%, sensitivity 94.44%, specificity 90%, precision 90.43%, recall 94.44%, F1-score 92.39% and G-mean 92.19% as compared to the current state-of-the-art techniques.
arXiv Detail & Related papers (2022-11-05T10:27:37Z) - Deep Labeling of fMRI Brain Networks Using Cloud Based Processing [0.0]
Resting state fMRI is used in neurosurgical pre-planning to visualize functional regions and assess regional activity.
We propose an end-to-end reproducible pipeline which incorporates image processing of rs-fMRI in a cloud-based workflow.
We use deep learning to automate the classification of Resting State Networks (RSNs)
arXiv Detail & Related papers (2022-09-16T23:59:42Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
State-of-the-art neural network language models (NNLMs) represented by long short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming highly complex.
In this paper, an overarching full Bayesian learning framework is proposed to account for the underlying uncertainty in LSTM-RNN and Transformer LMs.
arXiv Detail & Related papers (2022-08-28T17:50:19Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
State-of-the-art language models (LMs) represented by long-short term memory recurrent neural networks (LSTM-RNNs) and Transformers are becoming increasingly complex and expensive for practical applications.
Current quantization methods are based on uniform precision and fail to account for the varying performance sensitivity at different parts of LMs to quantization errors.
Novel mixed precision neural network LM quantization methods are proposed in this paper.
arXiv Detail & Related papers (2021-11-29T12:24:02Z) - Complex-valued Federated Learning with Differential Privacy and MRI Applications [51.34714485616763]
We introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(varepsilon, delta)$-DP and R'enyi-DP.
We present novel complex-valued neural network primitives compatible with DP.
Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task.
arXiv Detail & Related papers (2021-10-07T14:03:00Z) - Axial multi-layer perceptron architecture for automatic segmentation of
choroid plexus in multiple sclerosis [1.9351159699664233]
Choroides (CP) are structures of the ventricles of the brain which produce cerebrospinal fluid (CSF)
To the best of our knowledge, the only freely available tool for CP segmentation is FreeSurfer.
We introduce a new model called "Axial-MLP" based on an assembly of Axial multi-layer perceptrons (MLPs)
arXiv Detail & Related papers (2021-09-08T16:55:23Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.