論文の概要: Object based Bayesian full-waveform inversion for shear elastography
- arxiv url: http://arxiv.org/abs/2305.06646v1
- Date: Thu, 11 May 2023 08:25:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 15:29:27.084707
- Title: Object based Bayesian full-waveform inversion for shear elastography
- Title(参考訳): 物体ベースベイズ全波形インバージョンによるせん断エラストグラフィ
- Authors: Ana Carpio, Elena Cebrian, Andrea Gutierrez
- Abstract要約: 組織中の異常画像のせん断エラストグラフィーにおける不確かさを定量化する計算手法を開発した。
パラメータフィールドの後方確率は異常の幾何とそのせん断率を表わす。
滑らかで不規則な形状の合成2次元試験に対するアプローチを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a computational framework to quantify uncertainty in shear
elastography imaging of anomalies in tissues. We adopt a Bayesian inference
formulation. Given the observed data, a forward model and their uncertainties,
we find the posterior probability of parameter fields representing the geometry
of the anomalies and their shear moduli. To construct a prior probability, we
exploit the topological energies of associated objective functions. We
demonstrate the approach on synthetic two dimensional tests with smooth and
irregular shapes. Sampling the posterior distribution by Markov Chain Monte
Carlo (MCMC) techniques we obtain statistical information on the shear moduli
and the geometrical properties of the anomalies. General affine-invariant
ensemble MCMC samplers are adequate for shapes characterized by parameter sets
of low to moderate dimension. However, MCMC methods are computationally
expensive. For simple shapes, we devise a fast optimization scheme to calculate
the maximum a posteriori (MAP) estimate representing the most likely parameter
values. Then, we approximate the posterior distribution by a Gaussian
distribution found by linearization about the MAP point to capture the main
mode at a low computational cost.
- Abstract(参考訳): 組織内異常のせん断エラストグラフィーイメージングにおける不確かさを定量化する計算枠組みを開発した。
我々はベイズ推論の定式化を採用する。
観測されたデータ、フォワードモデル、およびそれらの不確実性から、アノマリーの幾何およびそれらのせん断モジュラーを表すパラメータフィールドの後方確率を求める。
事前確率を構成するために,関連する対象関数の位相エネルギーを利用する。
滑らかで不規則な形状の合成2次元試験に対するアプローチを実証する。
マルコフ連鎖モンテカルロ (mcmc) 法による後方分布のサンプリングを行い, せん断モジュラーと異常の幾何学的性質に関する統計的情報を得た。
一般アフィン不変アンサンブルMCMCサンプルは,低次元から中等次元のパラメータ集合を特徴とする形状に適している。
しかし、MCMC法は計算コストが高い。
簡単な形状の場合,最も可能性の高いパラメータ値を表す最大後続推定値(MAP)を計算するために,高速な最適化手法を考案する。
次に,MAP点の線形化によって発見されたガウス分布による後続分布を近似し,主モードを低計算コストで捕捉する。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Randomized Physics-Informed Machine Learning for Uncertainty
Quantification in High-Dimensional Inverse Problems [49.1574468325115]
本研究では,高次元逆問題における不確実性定量化のための物理インフォームド機械学習手法を提案する。
我々は解析的に、そして、ハミルトン・モンテカルロとの比較を通して、rPICKLE はベイズ則によって与えられる真の後続に収束することを示す。
論文 参考訳(メタデータ) (2023-12-11T07:33:16Z) - Weighted Riesz Particles [0.0]
対象分布を、パラメータの無限次元空間が多くの決定論的部分多様体からなる写像と考える。
我々は、Rieszと呼ばれる点の性質を研究し、それをシーケンシャルMCMCに埋め込む。
低い評価で高い受け入れ率が得られることが分かりました。
論文 参考訳(メタデータ) (2023-12-01T14:36:46Z) - Chebyshev Particles [0.0]
まず、対象の後方分布を無限次元ユークリッド空間におけるサンプルの写像として考える。
重み付けされたリース分極量を最大化して、ペアの相互作用により、補正可能な部分多様体を識別する新しい基準を提案する。
我々は,合成データを用いた線形状態空間モデルと実世界のデータを用いた非線形ボラティリティモデルを用いたパラメータ推論実験により,高い性能を実現した。
論文 参考訳(メタデータ) (2023-09-10T16:40:30Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
偏微分方程式モデルにおけるデータ同化とパラメータ推定のためのモデル逆アルゴリズムCKLEMAPを提案する。
CKLEMAP法は標準的なMAP法に比べてスケーラビリティがよい。
論文 参考訳(メタデータ) (2023-01-26T18:14:12Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
本稿では,2パラメータ統計力学系における熱力学関数と位相境界の再構成手法を提案する。
提案手法を用いて,IsingモデルとTASEPの分割関数と位相図を正確に再構成する。
論文 参考訳(メタデータ) (2022-05-18T17:11:23Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
マルチビューSfM, オードメトリ, SLAMセットアップにおける視覚的残差の共分散モデルの導出を行う。
我々は、合成データと実データを用いてモデルを検証し、それを光度および特徴量に基づくバンドル調整に統合する。
論文 参考訳(メタデータ) (2022-02-01T21:21:56Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
脳の灰白質細胞構造の特徴は、体密度と体積に定量的に敏感であり、dMRIでは未解決の課題である。
我々は新しいフォワードモデル、特に新しい方程式系を提案し、比較的スパースなb殻を必要とする。
次に,提案手法を逆転させるため,確率自由推論 (LFI) として知られるベイズ解析から最新のツールを適用した。
論文 参考訳(メタデータ) (2021-11-15T09:08:27Z) - Machine Learning and Variational Algorithms for Lattice Field Theory [1.198562319289569]
格子量子場論の研究において、格子理論を定義するパラメータは連続体物理学にアクセスする臨界性に向けて調整されなければならない。
経路積分の領域に適用される輪郭変形に基づいてモンテカルロ推定器を「変形」する手法を提案する。
我々は,フローベースMCMCが臨界減速を緩和し,オブザーシフォールドが原理的応用のばらつきを指数関数的に低減できることを実証した。
論文 参考訳(メタデータ) (2021-06-03T16:37:05Z) - An adaptive Hessian approximated stochastic gradient MCMC method [12.93317525451798]
後方からのサンプリング中に局所的幾何情報を組み込む適応型ヘッセン近似勾配MCMC法を提案する。
我々は,ネットワークの空間性を高めるために,等級に基づく重み付け法を採用する。
論文 参考訳(メタデータ) (2020-10-03T16:22:15Z) - Bayesian learning of orthogonal embeddings for multi-fidelity Gaussian
Processes [3.564709604457361]
プロジェクション」マッピングは、事前未知と見なされる正則行列から成り、GPパラメータと共同で推論する必要がある。
提案するフレームワークをGPを用いたマルチ忠実度モデルに拡張し,複数の出力を同時にトレーニングするシナリオを含む。
提案手法の利点は, 産業用ガスタービン用最終段翼の3次元空力最適化に難渋するものである。
論文 参考訳(メタデータ) (2020-08-05T22:28:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。