Probing spectral features of quantum many-body systems with quantum
simulators
- URL: http://arxiv.org/abs/2305.07649v1
- Date: Fri, 12 May 2023 17:58:44 GMT
- Title: Probing spectral features of quantum many-body systems with quantum
simulators
- Authors: Jinzhao Sun, Lucia Vilchez-Estevez, Vlatko Vedral, Andrew T.
Boothroyd, and M. S. Kim
- Abstract summary: We establish a framework for probing the excitation spectrum of quantum many-body systems with quantum simulators.
We show that the time complexity for transition energy estimation has a logarithmic dependence on simulation accuracy.
We experimentally demonstrate how spectroscopic features of spin lattice models can be probed with IBM quantum devices.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficient probing of spectral features of quantum many-body systems is
important for characterising and understanding the structure and dynamics of
quantum materials. In this work, we establish a framework for probing the
excitation spectrum of quantum many-body systems with quantum simulators. Our
approach effectively realises a spectral detector by processing the dynamics of
observables with time intervals drawn from a defined probability distribution,
which only requires native time evolution governed by the Hamiltonian without
any ancilla. The critical element of our method is the engineered emergence of
frequency resonance such that the excitation spectrum can be probed. We show
that the time complexity for transition energy estimation has a logarithmic
dependence on simulation accuracy, and discuss the noise e robustness of our
spectroscopic method. We present simulation results for the spectral features
of typical quantum systems, including quantum spins, fermions and bosons. We
experimentally demonstrate how spectroscopic features of spin lattice models
can be probed with IBM quantum devices.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum metrology using time-frequency as quantum continuous variables:
Resources, sub shot-noise precision and phase space representation [0.0]
We study the role of the electromagnetic field's frequency in time precision measurements using single photons as a paradigmatic system.
We show that it is possible to observe a quadratic scaling using quantum mode correlations only and explicit the mathematical expression of states saturating the Heisenberg limit.
arXiv Detail & Related papers (2022-10-11T15:02:33Z) - Witnessing Light-Driven Entanglement using Time-Resolved Resonant
Inelastic X-Ray Scattering [8.180110565400524]
Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies.
We propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials.
Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.
arXiv Detail & Related papers (2022-09-06T08:13:15Z) - Quantum Computation of Hydrogen Bond Dynamics and Vibrational Spectra [0.37187295985559027]
We introduce a framework for solving hydrogen-bond systems and more generic chemical dynamics problems using quantum logic.
We experimentally demonstrate a proof-of-principle instance of our method using the QSCOUT ion-trap quantum computer.
Our approach introduces a new paradigm for studying the quantum chemical dynamics and vibrational spectra of molecules.
arXiv Detail & Related papers (2022-04-18T21:42:54Z) - Relativistic meson spectra on ion-trap quantum simulators [0.0]
We analyze the capability of analog ion traps to explore relativistic meson spectra on current devices.
We focus on the E_8 quantum field theory regime, which arises due to longitudinal perturbations at the critical point of the transverse-field Ising model.
arXiv Detail & Related papers (2021-07-19T18:00:03Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.