論文の概要: AI for Agile development: a Meta-Analysis
- arxiv url: http://arxiv.org/abs/2305.08093v1
- Date: Sun, 14 May 2023 08:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-16 17:44:42.983806
- Title: AI for Agile development: a Meta-Analysis
- Title(参考訳): アジャイル開発のためのAI:メタ分析
- Authors: Beatriz Cabrero-Daniel
- Abstract要約: 本研究では,人工知能とアジャイルソフトウェア開発方法論を統合することのメリットと課題について検討する。
このレビューは、特別な社会技術専門知識の必要性など、重要な課題を特定するのに役立った。
プロセスや実践者への影響をよりよく理解し、その実装に関連する間接的な課題に対処するためには、さらなる研究が必要である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This study explores the benefits and challenges of integrating Artificial
Intelligence with Agile software development methodologies, focusing on
improving continuous integration and delivery. A systematic literature review
and longitudinal meta-analysis of the retrieved studies was conducted to
analyse the role of Artificial Intelligence and it's future applications within
Agile software development. The review helped identify critical challenges,
such as the need for specialised socio-technical expertise. While Artificial
Intelligence holds promise for improved software development practices, further
research is needed to better understand its impact on processes and
practitioners, and to address the indirect challenges associated with its
implementation.
- Abstract(参考訳): 本研究は,継続的インテグレーションとデリバリの改善に重点を置いた,人工知能とアジャイルソフトウェア開発方法論を統合することのメリットと課題について検討する。
検索した研究の体系的な文献レビューと縦断的なメタ分析を行い、人工知能とアジャイルソフトウェア開発における今後の応用について分析した。
このレビューは、特別な社会技術専門知識の必要性など、重要な課題を特定するのに役立った。
人工知能はソフトウェア開発プラクティスの改善を約束する一方で、プロセスや実践者への影響をより深く理解し、その実装に関連する間接的な課題に対処するためには、さらなる研究が必要である。
関連論文リスト
- The Enhancement of Software Delivery Performance through Enterprise DevSecOps and Generative Artificial Intelligence in Chinese Technology Firms [0.4532517021515834]
本研究では、DevSecOpsとGenerative Artificial Intelligenceの統合が、IT企業におけるソフトウェアデリバリのパフォーマンスに与える影響について検討する。
その結果、研究開発の効率が大幅に向上し、ソースコード管理が改善され、ソフトウェアの品質とセキュリティが向上した。
論文 参考訳(メタデータ) (2024-11-04T16:44:01Z) - Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
大規模言語モデル(LLM)に基づく人工知能技術は、特に感情分析においてゲームチェンジャーとなっている。
しかし、複雑なマルチモーダルデータを処理するための多様なAIモデルの統合と、それに伴う機能抽出の高コストは、大きな課題を呈している。
本研究では,様々なAIシステムにまたがるタスクを効率的に分散・解決するための協調型AIフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-17T06:14:34Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
IDEにおけるヒューマンAIエクスペリエンスの研究は、これらのAIツールがソフトウェア開発プロセスをどのように変化させているかを理解する上で非常に重要である。
我々は,IDE内人間-AI体験研究の現状を研究するために文献レビューを行った。
論文 参考訳(メタデータ) (2024-01-19T14:55:51Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
本研究は,AIエコシステムにおける多様性と包摂性(D&I)の倫理的命令の運用を想定することを目的とする。
AI開発における重要な課題は、D&Iの原則を効果的に運用することである。
本稿では,ジェネレーティブAI(GenAI)を用いたペルソナシミュレーションを活用したツール開発のためのフレームワークの構想を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:44:39Z) - PerfDetectiveAI -- Performance Gap Analysis and Recommendation in
Software Applications [0.0]
本稿では,ソフトウェアアプリケーションにおける性能ギャップ分析と提案のための概念的フレームワークPerfDetectiveAIを紹介する。
現代の機械学習(ML)と人工知能(AI)技術は、PerfDetectiveAIでパフォーマンス測定を監視し、ソフトウェアアプリケーションにおけるパフォーマンス不足の領域を特定するために使用されている。
論文 参考訳(メタデータ) (2023-06-11T02:53:04Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。