Out-of-equilibrium scaling behavior arising during round-trip protocols
across a quantum first-order transition
- URL: http://arxiv.org/abs/2305.12993v2
- Date: Wed, 20 Sep 2023 13:38:02 GMT
- Title: Out-of-equilibrium scaling behavior arising during round-trip protocols
across a quantum first-order transition
- Authors: Francesco Tarantelli and Stefano Scopa
- Abstract summary: We investigate the nonequilibrium dynamics of quantum spin chains during a round-trip protocol that slowly drives the system across a quantum first-order transition.
We show that such scaling relations persist when the driving protocol is inverted and the transition is approached again by a far-from-equilibrium state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the nonequilibrium dynamics of quantum spin chains during a
round-trip protocol that slowly drives the system across a quantum first-order
transition. Out-of-equilibrium scaling behaviors \`a la Kibble-Zurek for the
single-passage protocol across the first-order transition have been previously
determined. Here, we show that such scaling relations persist when the driving
protocol is inverted and the transition is approached again by a
far-from-equilibrium state. This results in a quasi-universality of the scaling
functions, which keep some dependence on the details of the protocol at the
inversion time. We explicitly determine such quasi-universal scaling functions
by employing an effective two-level description of the many-body system near
the transition. We discuss the validity of this approximation and how this
relates to the observed scaling regime. Although our results apply to generic
systems, we focus on the prototypical example of a $1D$ transverse field Ising
model in the ferromagnetic regime, which we drive across the first-order
transitions through a time-dependent longitudinal field.
Related papers
- Concomitant Entanglement and Control Criticality Driven by Collective Measurements [0.0]
We study Adaptive quantum circuits where a quantum many-body state is controlled using measurements and conditional unitary operations.
We find two types of nonequilibrium quantum phase transitions: measurement-induced transitions between volume- and area-law-entangled steady states and control-induced transitions where the system falls into an absorbing state.
We attribute this feature and the apparent coincidence of the control and entanglement transitions to the global nature of the control.
arXiv Detail & Related papers (2024-09-10T18:00:03Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Control landscape of measurement-assisted transition probability for a
three-level quantum system with dynamical symmetry [77.34726150561087]
Quantum systems with dynamical symmetries have conserved quantities which are preserved under coherent controls.
Incoherent control can increase the maximal attainable transition probability.
We show that all critical points are global maxima, global minima, saddle points and second order traps.
arXiv Detail & Related papers (2023-07-14T16:12:21Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Triviality of quantum trajectories close to a directed percolation
transition [0.0]
We study quantum circuits consisting of unitary gates, projective measurements, and control operations that steer the system towards a pure absorbing state.
Two types of phase transition occur as the rate of these control operations is increased: a measurement-induced entanglement transition, and a directed percolation transition into the absorbing state.
arXiv Detail & Related papers (2022-12-28T18:52:56Z) - Interplay between transport and quantum coherences in free fermionic
systems [58.720142291102135]
We study the quench dynamics in free fermionic systems.
In particular, we identify a function, that we dub emphtransition map, which takes the value of the stationary current as input and gives the value of correlation as output.
arXiv Detail & Related papers (2021-03-24T17:47:53Z) - Measurement-Induced Entanglement Transitions in the Quantum Ising Chain:
From Infinite to Zero Clicks [0.0]
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment.
We find a remarkably similar phenomenology as the measurement strength $gamma$ is increased.
We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement.
arXiv Detail & Related papers (2021-03-16T15:30:57Z) - Probing the topological Anderson transition with quantum walks [48.7576911714538]
We consider one-dimensional quantum walks in optical linear networks with synthetically introduced disorder and tunable system parameters.
The option to directly monitor the walker's probability distribution makes this optical platform ideally suited for the experimental observation of the unique signatures of the one-dimensional topological Anderson transition.
arXiv Detail & Related papers (2021-02-01T21:19:15Z) - Entanglement entropy scaling transition under competing monitoring
protocols [0.0]
We analyze the competition between two different dissipation channels arising from two incompatible continuous monitoring protocols.
By studying the trajectory of quantum trajectories associated with the continuous monitoring protocols, we present a transition for the scaling of the averaged entanglement entropies.
arXiv Detail & Related papers (2020-08-19T18:23:01Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.