論文の概要: A Multiple Parameter Linear Scale-Space for one dimensional Signal
Classification
- arxiv url: http://arxiv.org/abs/2305.13350v1
- Date: Mon, 22 May 2023 17:14:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-24 21:16:36.623031
- Title: A Multiple Parameter Linear Scale-Space for one dimensional Signal
Classification
- Title(参考訳): 1次元信号分類のための多重パラメータ線形スケール空間
- Authors: Leon A. Luxemburg and Steven B. Damelin
- Abstract要約: 多パラメータ線形スケール空間のためのカーネルの最大集合を構築し、一次元連続信号の分類と認識のための木を構築する。
カーネルの最大集合のいくつかの有用な性質が導出される。
新たなトポロジカルな木構築法が導入された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this article we construct a maximal set of kernels for a multi-parameter
linear scale-space that allow us to construct trees for classification and
recognition of one-dimensional continuous signals similar the Gaussian linear
scale-space approach. Fourier transform formulas are provided and used for
quick and efficient computations. A number of useful properties of the maximal
set of kernels are derived. We also strengthen and generalize some previous
results on the classification of Gaussian kernels. Finally, a new topologically
invariant method of constructing trees is introduced.
- Abstract(参考訳): 本稿では,多パラメータ線形スケール空間に対するカーネルの最大集合を構築し,ガウス線形スケール空間アプローチに似た一次元連続信号の分類と認識のための木を構築する。
フーリエ変換式が提供され、高速かつ効率的な計算に使用される。
カーネルの最大集合のいくつかの有用な性質が導出される。
また、ガウス核の分類に関する以前の結果を補強し、一般化する。
最後に,木を構築するための新しいトポロジカル不変手法を紹介した。
関連論文リスト
- Direction of Arrival Estimation with Sparse Subarrays [0.0]
本稿では,タイプIとタイプIIの2つの配列カテゴリを含む配列アーキテクチャを提案する。
そこで我々は,部分的に校正された配列シナリオに適した2つのDOA推定アルゴリズムを考案した。
アルゴリズムは、利用可能な物理センサーの数よりも多くのソースを推定することができる。
論文 参考訳(メタデータ) (2024-08-17T23:47:24Z) - Learning Low-Dimensional Nonlinear Structures from High-Dimensional
Noisy Data: An Integral Operator Approach [5.975670441166475]
本研究では,高次元および雑音観測から低次元非線形構造を学習するためのカーネルスペクトル埋め込みアルゴリズムを提案する。
このアルゴリズムは、基礎となる多様体の事前の知識に依存しない適応的な帯域幅選択手順を用いる。
得られた低次元埋め込みは、データ可視化、クラスタリング、予測などの下流目的にさらに活用することができる。
論文 参考訳(メタデータ) (2022-02-28T22:46:34Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
共分散行列の明示的な構成を避ける新しい推論手法を提案する。
本手法では, 数値線形代数と共役勾配アルゴリズムの対角線推定結果とを結合する。
いくつかのシミュレーションにおいて,本手法は計算時間とメモリにおける既存手法よりも拡張性が高い。
論文 参考訳(メタデータ) (2022-02-25T16:35:26Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
単純複体は多方向順序関係を明示的にエンコードするグラフの高次元一般化と見なすことができる。
単体錯体の$k$-homological特徴によってパラメータ化された関数のグラフ畳み込みモデルを提案する。
論文 参考訳(メタデータ) (2021-10-28T14:59:41Z) - Kernel-based estimation for partially functional linear model: Minimax
rates and randomized sketches [12.799283644502882]
本稿では,機能的共変量と高次元スカラーベクトルからなる部分関数線形モデル(PFLM)について考察する。
無限次元再生核ヒルベルト空間上で、提案されたPFLMの推定は、関数ノルムと$ell_$-ノルムの2つの混合正規化を持つ最小二乗アプローチである。
論文 参考訳(メタデータ) (2021-10-18T06:27:59Z) - Multilevel orthogonal Bochner function subspaces with applications to
robust machine learning [1.533771872970755]
このデータを、関連するボヒナー空間内のランダムフィールドのインスタンスとみなす。
私たちのキーとなる観察は、クラスが主に2つの異なる部分空間に存在することである。
論文 参考訳(メタデータ) (2021-10-04T22:01:01Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
データセットの構造的多様性を最も効率的に表現するために選択される適応的で最適な数値ベースを構築する方法について議論します。
トレーニングデータセットごとに、この最適なベースはユニークで、プリミティブベースに関して追加のコストなしで計算することができる。
この構成が精度と計算効率のよい表現をもたらすことを実証する。
論文 参考訳(メタデータ) (2021-05-18T17:57:08Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Linear Classifiers in Mixed Constant Curvature Spaces [40.82908295137667]
我々は、ユークリッド空間、球面空間、双曲空間の混合である積空間形式の線形分類の問題に対処する。
我々は、$d$-次元定数曲率空間の線形分類子が正確に$d+1$点を粉砕できることを証明した。
新規なパーセプトロン分類アルゴリズムを記述し、厳密な収束結果を確立する。
論文 参考訳(メタデータ) (2021-02-19T23:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。