論文の概要: Mirror Descent on Reproducing Kernel Banach Spaces
- arxiv url: http://arxiv.org/abs/2411.11242v1
- Date: Mon, 18 Nov 2024 02:18:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:37.427039
- Title: Mirror Descent on Reproducing Kernel Banach Spaces
- Title(参考訳): カーネル・バナッハ・スペースの再現について
- Authors: Akash Kumar, Mikhail Belkin, Parthe Pandit,
- Abstract要約: 本稿では,再生カーネルを用いたバナッハ空間の学習問題に対処する。
再生カーネルを用いてバナッハ空間の双対空間における勾配ステップを利用するアルゴリズムを提案する。
実際にこのアルゴリズムをインスタンス化するために、$p$-normのRKBSの新しいファミリーを導入する。
- 参考スコア(独自算出の注目度): 12.716091600034543
- License:
- Abstract: Recent advances in machine learning have led to increased interest in reproducing kernel Banach spaces (RKBS) as a more general framework that extends beyond reproducing kernel Hilbert spaces (RKHS). These works have resulted in the formulation of representer theorems under several regularized learning schemes. However, little is known about an optimization method that encompasses these results in this setting. This paper addresses a learning problem on Banach spaces endowed with a reproducing kernel, focusing on efficient optimization within RKBS. To tackle this challenge, we propose an algorithm based on mirror descent (MDA). Our approach involves an iterative method that employs gradient steps in the dual space of the Banach space using the reproducing kernel. We analyze the convergence properties of our algorithm under various assumptions and establish two types of results: first, we identify conditions under which a linear convergence rate is achievable, akin to optimization in the Euclidean setting, and provide a proof of the linear rate; second, we demonstrate a standard convergence rate in a constrained setting. Moreover, to instantiate this algorithm in practice, we introduce a novel family of RKBSs with $p$-norm ($p \neq 2$), characterized by both an explicit dual map and a kernel.
- Abstract(参考訳): 近年の機械学習の進歩は、カーネル・バナッハ空間(RKBS)の再生への関心を高め、カーネル・ヒルベルト空間(RKHS)の再生を超えて拡張されたより一般的なフレームワークとなった。
これらの研究は、いくつかの正規化学習スキームの下での表現定理の定式化をもたらした。
しかし、この設定でこれらの結果を含む最適化手法についてはほとんど分かっていない。
本稿では、RKBS内での効率的な最適化に焦点をあて、再生カーネルを備えたバナッハ空間の学習問題に対処する。
この課題に対処するため,ミラー降下(MDA)に基づくアルゴリズムを提案する。
提案手法は、再生カーネルを用いてバナッハ空間の双対空間における勾配ステップを利用する反復的手法を含む。
まず, 線形収束率が達成可能な条件を特定し, ユークリッド設定における最適化に類似した条件を同定し, 線形収束率の証明を行う。
さらに、このアルゴリズムを実際にインスタンス化するために、明示的な双対写像とカーネルの両方を特徴とする$p$-norm(p \neq 2$)のRKBSの新しいファミリーを導入する。
関連論文リスト
- Learning Analysis of Kernel Ridgeless Regression with Asymmetric Kernel Learning [33.34053480377887]
本稿では,局所適応バンド幅(LAB)RBFカーネルを用いたカーネルリッジレスレグレッションを強化する。
初めて、LAB RBFカーネルから学習した関数は、Reproducible Kernel Hilbert Spaces (RKHSs) の積分空間に属することを示した。
論文 参考訳(メタデータ) (2024-06-03T15:28:12Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
本稿では,ニューラルネットワークトレーニングを安定化(大規模)するための原理的手法として,線形アヘッドの理論解析を提案する。
最適化過程の不安定性は、しばしば損失ランドスケープの非単調性によって引き起こされるものであり、非拡張作用素の理論を活用することによって線型性がいかに役立つかを示す。
論文 参考訳(メタデータ) (2023-10-20T12:45:12Z) - On the Sublinear Regret of GP-UCB [58.25014663727544]
ガウス過程上信頼境界 (GP-UCB) アルゴリズムは, ほぼ最適の後悔率を有することを示す。
私たちの改善は、基盤となるカーネルの滑らかさに比例してカーネルリッジ推定を正規化するという、重要な技術的貢献に依存しています。
論文 参考訳(メタデータ) (2023-07-14T13:56:11Z) - Linear Convergence of Reshuffling Kaczmarz Methods With Sparse
Constraints [7.936519714074615]
カッツマルツ行列(英語版)(KZ)とその変種は、部分線型方程式系を解く際の単純さと効率性のために広く研究されている。
KHT に対する最初の理論的収束保証は、空間的制約のある系の解に線形に収束することを示すことである。
論文 参考訳(メタデータ) (2023-04-20T07:14:24Z) - Coefficient-based Regularized Distribution Regression [4.21768682940933]
我々は、確率測度から実数値応答への回帰を目的とした係数に基づく正規化分布回帰を、Hilbert空間(RKHS)上で考える。
回帰関数の正則範囲が異なるアルゴリズムの漸近挙動を包括的に研究した。
最適速度は、いくつかの穏やかな条件下で得られるが、これは1段のサンプル化された最小値の最適速度と一致する。
論文 参考訳(メタデータ) (2022-08-26T03:46:14Z) - Learning "best" kernels from data in Gaussian process regression. With
application to aerodynamics [0.4588028371034406]
本稿では,ガウス過程の回帰/クリギングサロゲートモデリング手法におけるカーネルの選択/設計アルゴリズムを紹介する。
アルゴリズムの最初のクラスはカーネルフローであり、機械学習の分類の文脈で導入された。
アルゴリズムの第2のクラスはスペクトル核リッジ回帰と呼ばれ、近似される関数のノルムが最小となるような「最良の」カーネルを選択することを目的としている。
論文 参考訳(メタデータ) (2022-06-03T07:50:54Z) - On the Benefits of Large Learning Rates for Kernel Methods [110.03020563291788]
本稿では,カーネル手法のコンテキストにおいて,現象を正確に特徴付けることができることを示す。
分離可能なヒルベルト空間における2次対象の最小化を考慮し、早期停止の場合、学習速度の選択が得られた解のスペクトル分解に影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2022-02-28T13:01:04Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
汎用性を維持しつつ高い忠実度近似を提供する,スケーラブルな変分ガウス過程近似を導入する。
様々な回帰問題や分類問題において,本手法は変換やリフレクションなどの入力空間対称性を活用できることを実証する。
提案手法は, 純粋なGPモデルのうち, CIFAR-10 の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-10T18:17:57Z) - Fast Learning in Reproducing Kernel Krein Spaces via Signed Measures [31.986482149142503]
我々はこの質問を,強調指標を導入することで,分布視点として捉えた。
一連の非PDカーネルは、特定の有限ボレル測度の線型結合に関連付けられる。
特に、このソリューションは、大規模なサンプルケースで非PDカーネルをスケールするために、実際に計算的に実装可能である。
論文 参考訳(メタデータ) (2020-05-30T12:10:35Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。