Engineering active motion in quantum matter
- URL: http://arxiv.org/abs/2305.16131v4
- Date: Tue, 01 Jul 2025 15:22:19 GMT
- Title: Engineering active motion in quantum matter
- Authors: Alexander P. Antonov, Yuanjian Zheng, Benno Liebchen, Hartmut Löwen,
- Abstract summary: We introduce a framework for engineering active quantum matter that involves mimicking the role of self-propulsion.<n>In the presence of dissipation, not only recovers essential dynamical behavior of classical activity, but also reveals additional features of activity that are of quantum origin.<n>These quantum-active features are revealed in non-dissipative systems, and manifest as novel exponents of the mean-square displacement at short timescales.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a framework for engineering active quantum matter that involves mimicking the role of self-propulsion through an external trapping potential that is moving along imposed trajectories traced by classical active dynamics. This approach in the presence of dissipation, not only recovers essential dynamical behavior of classical activity, including the ballistic to diffusive cross-over of its mean-square displacement, but also reveals additional features of activity that are of quantum origin. These quantum-active features are revealed in non-dissipative systems, and manifest as novel exponents of the mean-square displacement at short timescales.
Related papers
- Beyond Spin: Torsion-Driven Nonlinearity in Spinless Quantum Mechanics [0.0]
We investigate the previously unexplored quantum dynamics of non-relativistic, spinless particles propagating in curved spaces with torsion.
Our results reveal a previously unrecognized mechanism by which torsion, as predicted in certain extensions of general relativity, can influence quantum systems.
arXiv Detail & Related papers (2025-04-13T19:13:35Z) - Quantum ergodicity and scrambling in quantum annealers [0.0]
We show that the unitary evolution operator describing the complete dynamics of quantum annealers is typically highly quantum chaotic.
We observe that the Heisenberg dynamics of a quantum annealer leads to extensive operator spreading, a hallmark of quantum information scrambling.
arXiv Detail & Related papers (2024-11-19T16:34:35Z) - Self-interaction induced phase modulation for directed current, energy diffusion and quantum scrambling in a Floquet ratchet system [0.0]
We investigate the dynamics of directed current, mean energy, and quantum scrambling in an interacting Floquet system with a ratchet potential.
The directed current is controlled by the phase of the ratchet potential and remains independent of the self-interaction strength.
The phase modulation induced by self-interaction dominates the quadratic growth of both mean energy and Out-of-Time-Ordered Correlators (OTOCs)
arXiv Detail & Related papers (2024-11-01T22:17:24Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Exact solution to quantum dynamical activity [1.6574413179773757]
We present the exact solution for the quantum dynamical activity by deploying the continuous matrix product state method.
We also determine the upper bound of the dynamical activity, which comprises the standard deviation of the system Hamiltonian and jump operators.
arXiv Detail & Related papers (2023-11-21T14:22:35Z) - Mean-field dynamics of open quantum systems with collective
operator-valued rates: validity and application [0.0]
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all coupling Hamiltonian.
We study the time evolution in the limit of infinitely large systems, and we demonstrate the exactness of the mean-field equations for the dynamics of average operators.
Our results allow for a rigorous and systematic investigation of the impact of quantum effects on paradigmatic classical models.
arXiv Detail & Related papers (2023-02-08T15:58:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Localization properties in disordered quantum many-body dynamics under
continuous measurement [0.0]
We study localization properties of continuously monitored dynamics in quantum many-body systems.
By calculating the fidelity between random quantum trajectories, we demonstrate that the disorder and the measurement can lead to dynamical properties distinct from each other.
arXiv Detail & Related papers (2023-01-18T03:39:39Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Memory effects in quantum dynamics modelled by quantum renewal processes [0.0]
We focus on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes.
By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process.
arXiv Detail & Related papers (2021-06-14T18:27:46Z) - Quasiclassical approach to quantum quench dynamics in the presence of an
excited-state quantum phase transition [0.0]
Recent works have shown, using exact quantum mechanical approach, that equilibration after quantum quench exhibits specific features in the presence of excited-state quantum phase transitions.
We demonstrate that these features can be understood from the classical evolution of the Wigner function in phase space.
arXiv Detail & Related papers (2020-10-15T13:49:48Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.