Inferring Individual Direct Causal Effects Under Heterogeneous Peer Influence
- URL: http://arxiv.org/abs/2305.17479v3
- Date: Wed, 28 Aug 2024 11:27:25 GMT
- Title: Inferring Individual Direct Causal Effects Under Heterogeneous Peer Influence
- Authors: Shishir Adhikari, Elena Zheleva,
- Abstract summary: Causal inference in networks should account for interference, which occurs when a unit's outcome is influenced by treatments or outcomes of peers.
We propose a structural causal model for networks that can capture different possible assumptions about network structure, interference conditions, and causal dependence.
We find potential heterogeneous contexts using the causal model and propose a novel graph neural network-based estimator to estimate individual direct causal effects.
- Score: 10.609670658904562
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference in networks should account for interference, which occurs when a unit's outcome is influenced by treatments or outcomes of peers. Heterogeneous peer influence (HPI) occurs when a unit's outcome is influenced differently by different peers based on their attributes and relationships, or when each unit has a different susceptibility to peer influence. Existing solutions to estimating direct causal effects under interference consider either homogeneous influence from peers or specific heterogeneous influence mechanisms (e.g., based on local neighborhood structure). This paper presents a methodology for estimating individual direct causal effects in the presence of HPI where the mechanism of influence is not known a priori. We propose a structural causal model for networks that can capture different possible assumptions about network structure, interference conditions, and causal dependence and enables reasoning about identifiability in the presence of HPI. We find potential heterogeneous contexts using the causal model and propose a novel graph neural network-based estimator to estimate individual direct causal effects. We show that state-of-the-art methods for individual direct effect estimation produce biased results in the presence of HPI, and that our proposed estimator is robust.
Related papers
- Generative Intervention Models for Causal Perturbation Modeling [80.72074987374141]
In many applications, it is a priori unknown which mechanisms of a system are modified by an external perturbation.
We propose a generative intervention model (GIM) that learns to map these perturbation features to distributions over atomic interventions.
arXiv Detail & Related papers (2024-11-21T10:37:57Z) - Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Estimating Peer Direct and Indirect Effects in Observational Network Data [16.006409149421515]
We propose a general setting which considers both peer direct effects and peer indirect effects, and the effect of an individual's own treatment.
We use attention mechanisms to distinguish the influences of different neighbors and explore high-order neighbor effects through graph neural networks.
Our theoretical findings have the potential to improve intervention strategies in networked systems, with applications in areas such as social networks and epidemiology.
arXiv Detail & Related papers (2024-08-21T10:02:05Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
Causal mediation analysis is a method that is often used to reveal direct and indirect effects.
Deep learning shows promise in mediation analysis, but the current methods only assume latent confounders that affect treatment, mediator and outcome simultaneously.
We propose the Disentangled Mediation Analysis Variational AutoEncoder (DMAVAE), which disentangles the representations of latent confounders into three types to accurately estimate the natural direct effect, natural indirect effect and total effect.
arXiv Detail & Related papers (2023-02-19T23:37:17Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
adversarial vulnerability of deep neural networks has attracted significant attention in machine learning.
We propose to incorporate causality into mitigating adversarial vulnerability.
Our method can be seen as the first attempt to leverage causality for mitigating adversarial vulnerability.
arXiv Detail & Related papers (2021-06-11T06:55:02Z) - Latent Causal Invariant Model [128.7508609492542]
Current supervised learning can learn spurious correlation during the data-fitting process.
We propose a Latent Causal Invariance Model (LaCIM) which pursues causal prediction.
arXiv Detail & Related papers (2020-11-04T10:00:27Z) - Estimating Causal Effects with the Neural Autoregressive Density
Estimator [6.59529078336196]
We use neural autoregressive density estimators to estimate causal effects within the Pearl's do-calculus framework.
We show that the approach can retrieve causal effects from non-linear systems without explicitly modeling the interactions between the variables.
arXiv Detail & Related papers (2020-08-17T13:12:38Z) - A Critical View of the Structural Causal Model [89.43277111586258]
We show that one can identify the cause and the effect without considering their interaction at all.
We propose a new adversarial training method that mimics the disentangled structure of the causal model.
Our multidimensional method outperforms the literature methods on both synthetic and real world datasets.
arXiv Detail & Related papers (2020-02-23T22:52:28Z) - Causal Inference under Networked Interference and Intervention Policy
Enhancement [35.149125599812706]
Estimating individual treatment effects from data of randomized experiments is a critical task in causal inference.
Usually, in randomized experiments or observational studies with interconnected units, one can only observe treatment responses under interference.
We study causal effect estimation under general network interference using GNNs, which are powerful tools for capturing the dependency in the graph.
arXiv Detail & Related papers (2020-02-20T00:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.