論文の概要: IcSDE+ -- An Indicator for Constrained Multi-Objective Optimization
- arxiv url: http://arxiv.org/abs/2305.18734v1
- Date: Tue, 30 May 2023 04:19:01 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 18:18:00.432721
- Title: IcSDE+ -- An Indicator for Constrained Multi-Objective Optimization
- Title(参考訳): IcSDE+ -- 制約付き多目的最適化のための指標
- Authors: Oladayo S. Ajani, Rammohan Mallipeddi and Sri Srinivasa Raju M
- Abstract要約: IcSDE+と呼ばれる効果的な単一人口指標に基づくCMOEAを提案する。
IcSDE+は制約違反(c)、シフトベース密度推定(SDE)、目的の和(+)の効率的な融合である
IcSDE+によるCMOEAの性能は、異なる特徴を持つ6つのベンチマークスイート上の9つの最先端のCMOEAと比較して好意的に比較される。
- 参考スコア(独自算出の注目度): 4.511923587827301
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effectiveness of Constrained Multi-Objective Evolutionary Algorithms
(CMOEAs) depends on their ability to reach the different feasible regions
during evolution, by exploiting the information present in infeasible
solutions, in addition to optimizing the several conflicting objectives. Over
the years, researchers have proposed several CMOEAs to handle CMOPs. However,
among the different CMOEAs proposed most of them are either decomposition-based
or Pareto-based, with little focus on indicator-based CMOEAs. In literature,
most indicator-based CMOEAs employ - a) traditional indicators used to solve
unconstrained multi-objective problems to find the indicator values using
objectives values and combine them with overall constraint violation to solve
Constrained Multi-objective Optimization Problem (CMOP) as a single objective
constraint problem, or b) consider each constraint or the overall constraint
violation as objective(s) in addition to the actual objectives. In this paper,
we propose an effective single-population indicator-based CMOEA referred to as
IcSDE+ that can explore the different feasible regions in the search space.
IcSDE+ is an (I)ndicator, that is an efficient fusion of constraint violation
(c), shift-based density estimation (SDE) and sum of objectives (+). The
performance of CMOEA with IcSDE+ is favorably compared against 9
state-of-the-art CMOEAs on 6 different benchmark suites with diverse
characteristics
- Abstract(参考訳): 制約付き多目的進化アルゴリズム(CMOEA)の有効性は、いくつかの矛盾する目的を最適化するだけでなく、実現不可能な解に存在する情報を活用することによって、進化中に異なる実現可能な領域に到達する能力に依存する。
長年にわたり、研究者はCMOPを扱うためのいくつかのCMOEAを提案してきた。
しかし、CMOEAは分解ベースかParetoベースかのどちらかで、指標ベースのCMOEAにはほとんど焦点を当てていない。
文学において,ほとんどの指標に基づくcmoeasが採用する
イ 目的値を用いて指標値を見つけ出し、総合的制約違反と組み合わせて、単一の目的的制約問題として制約付き多目的最適化問題(CMOP)を解決するための伝統的な指標
b) 実際の目的に加えて,各制約又は全体制約違反を目的として考えること。
本稿では,探索空間の異なる領域を探索できるicsde+と呼ばれる,効果的な単個体数インジケータベースのcmoeaを提案する。
IcSDE+は(I)ndicatorであり、制約違反(c)、シフトベース密度推定(SDE)、目的(+)の和の効率的な融合である。
IcSDE+によるCMOEAの性能は、異なる特徴を持つ6種類のベンチマークスイート上での9つの最先端CMOEAと比較して好意的に比較される。
関連論文リスト
- Maintaining Diversity Provably Helps in Evolutionary Multimodal Optimization [20.621635722585502]
解空間における解の多様性を考慮に入れた簡単な方法が進化的アルゴリズム(EA)の探索に有効であることを示す。
提案手法は,クロスオーバーで作業することで探索の促進に寄与し,予測走行時間において,マルチモーダルあるいは指数加速度がもたらされることを実証する。
論文 参考訳(メタデータ) (2024-06-04T17:52:14Z) - An Efficient Approach for Solving Expensive Constrained Multiobjective Optimization Problems [0.0]
効率的な確率的選択に基づく制約付き多目的EAをPSCMOEAと呼ぶ。
a) 評価された解の実現可能性と収束状態に基づく適応探索境界同定スキームのような新しい要素を含む。
ECMOPを模擬する低評価予算を用いて, 幅広い制約付き問題に対して, 数値実験を行った。
論文 参考訳(メタデータ) (2024-05-22T02:32:58Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
マルチオブジェクト強化学習(MORL)エージェントでは、意思決定行動の最適化を行う。
重みベクトル w でパラメータ化される線型効用関数の場合に焦点を当てる。
学習過程の異なる段階で最も有望な重みベクトルを効率的に探索する上信頼境界に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-05-01T09:34:42Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
多目的最適化(MOCO)の問題は、現実世界の多くのアプリケーションで見られる。
我々は,与えられたMOCO問題に対するパレート集合全体を,探索手順を伴わずに近似する学習ベースアプローチを開発した。
提案手法は,多目的走行セールスマン問題,マルチコンディショニング車両ルーティング問題,複数クナップサック問題において,ソリューションの品質,速度,モデル効率の面で,他の方法よりも優れていた。
論文 参考訳(メタデータ) (2022-03-29T09:26:22Z) - Multi-Objective Constrained Optimization for Energy Applications via
Tree Ensembles [55.23285485923913]
エネルギーシステムの最適化問題は、強い非線形系の挙動と複数の競合する目的のために複雑である。
場合によっては、提案された最適解は、物理的性質や安全クリティカルな操作条件に関連する明示的な入力制約に従う必要がある。
本稿では,ブラックボックス問題に対する制約付き多目的最適化のためのツリーアンサンブルを用いた新しいデータ駆動戦略を提案する。
論文 参考訳(メタデータ) (2021-11-04T20:18:55Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z) - Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization [0.0]
本稿では、MoHAEAと呼ばれるハイブリッド適応進化アルゴリズム(HAEA)の拡張として、新しい多目的アルゴリズムを提案する。
MoHAEAは、MOEA/D、pa$lambda$-MOEA/D、MOEA/D-AWA、NSGA-IIの4つの状態と比較される。
論文 参考訳(メタデータ) (2020-04-29T02:16:49Z) - An Eigenspace Divide-and-Conquer Approach for Large-Scale Optimization [9.501723707464432]
ディバイド・アンド・コンカー(DC)の進化的アルゴリズムは、大規模な最適化問題に対処する上で顕著な成功を収めた。
本研究では,固有空間分割・コンカレント(EDC)手法を提案する。
論文 参考訳(メタデータ) (2020-04-05T07:29:44Z) - GACEM: Generalized Autoregressive Cross Entropy Method for Multi-Modal
Black Box Constraint Satisfaction [69.94831587339539]
本稿では,マスク付き自己回帰ニューラルネットワークを用いて解空間上の均一分布をモデル化するクロスエントロピー法(CEM)を提案する。
我々のアルゴリズムは複雑な解空間を表現でき、様々な異なる解領域を追跡できる。
論文 参考訳(メタデータ) (2020-02-17T20:21:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。