論文の概要: Adaptive Conditional Quantile Neural Processes
- arxiv url: http://arxiv.org/abs/2305.18777v1
- Date: Tue, 30 May 2023 06:19:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 17:59:26.237579
- Title: Adaptive Conditional Quantile Neural Processes
- Title(参考訳): 適応型条件量子ニューラルプロセス
- Authors: Peiman Mohseni, Nick Duffield, Bani Mallick, Arman Hasanzadeh
- Abstract要約: 条件量子ニューラルプロセス(CQNP)は、ニューラルプロセスファミリーの新たなメンバーである。
本稿では,情報量推定に焦点をあてることから学習する量子レグレッションの拡張を提案する。
実データと合成データセットによる実験は、予測性能を大幅に改善した。
- 参考スコア(独自算出の注目度): 9.066817971329899
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural processes are a family of probabilistic models that inherit the
flexibility of neural networks to parameterize stochastic processes. Despite
providing well-calibrated predictions, especially in regression problems, and
quick adaptation to new tasks, the Gaussian assumption that is commonly used to
represent the predictive likelihood fails to capture more complicated
distributions such as multimodal ones. To overcome this limitation, we propose
Conditional Quantile Neural Processes (CQNPs), a new member of the neural
processes family, which exploits the attractive properties of quantile
regression in modeling the distributions irrespective of their form. By
introducing an extension of quantile regression where the model learns to focus
on estimating informative quantiles, we show that the sampling efficiency and
prediction accuracy can be further enhanced. Our experiments with real and
synthetic datasets demonstrate substantial improvements in predictive
performance compared to the baselines, and better modeling of heterogeneous
distributions' characteristics such as multimodality.
- Abstract(参考訳): ニューラルネットワークは確率論的過程をパラメータ化するためにニューラルネットワークの柔軟性を継承する確率論的モデルのファミリーである。
特に回帰問題において、よく校正された予測を提供し、新しいタスクに素早く適応するにもかかわらず、予測可能性を表すのによく使われるガウスの仮定は、マルチモーダル分布のようなより複雑な分布を捉えることに失敗する。
この制限を克服するために、ニューラルプロセスファミリーの新しいメンバーである条件量子ニューラルプロセス(CQNP)を提案する。
モデルが情報量の推定に集中することを学ぶ量子回帰の拡張を導入することにより、サンプリング効率と予測精度をさらに向上できることが示される。
実データおよび合成データを用いた実験は,ベースラインに比べて予測性能が大幅に向上し,マルチモーダリティなどの異種分布特性のモデル化が向上した。
関連論文リスト
- Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
多重モード回帰は非定常過程の予測や分布の複雑な混合において重要である。
構造的放射基底関数ネットワークは回帰問題に対する複数の仮説予測器のアンサンブルとして提示される。
この構造モデルにより, このテッセルレーションを効率よく補間し, 複数の仮説対象分布を近似することが可能であることが証明された。
論文 参考訳(メタデータ) (2023-09-02T01:27:53Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Neural Spline Search for Quantile Probabilistic Modeling [35.914279831992964]
パラメトリックな仮定を伴わない観測データ分布を表現するために,非パラメトリックかつデータ駆動型手法であるニューラルスプラインサーチ(NSS)を提案する。
我々は,NASが,合成,実世界の回帰,時系列予測タスクにおいて,従来の手法よりも優れていたことを実証した。
論文 参考訳(メタデータ) (2023-01-12T07:45:28Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Autoregressive Quantile Flows for Predictive Uncertainty Estimation [7.184701179854522]
高次元変数上の確率モデルの柔軟なクラスである自己回帰量子フローを提案する。
これらのモデルは、適切なスコアリングルールに基づいて、新しい目的を用いて訓練された自己回帰フローの例である。
論文 参考訳(メタデータ) (2021-12-09T01:11:26Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Doubly Stochastic Variational Inference for Neural Processes with
Hierarchical Latent Variables [37.43541345780632]
本稿では,Double Variational Neural Process (DSVNP) と呼ぶニューラル・プロセス(NP)モデルを提案する。
本モデルでは,大域的潜伏変数と局所潜伏変数を組み合わせて予測を行い,このモデルをいくつかの実験で評価し,多出力回帰における競合予測性能と分類における不確実性評価を示す。
論文 参考訳(メタデータ) (2020-08-21T13:32:12Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。