Measurement-based infused circuits for variational quantum eigensolvers
- URL: http://arxiv.org/abs/2305.19200v3
- Date: Sat, 1 Jun 2024 02:39:39 GMT
- Title: Measurement-based infused circuits for variational quantum eigensolvers
- Authors: Albie Chan, Zheng Shi, Luca Dellantonio, Wolfgang Dür, Christine A. Muschik,
- Abstract summary: Variational quantum eigensolvers (VQEs) are successful algorithms for studying physical systems on quantum computers.
In this work, we incorporate such ideas into traditional VQE circuits.
We showcase our approach on real superconducting quantum computers by performing VQE simulations of testbed systems.
- Score: 1.732837834702512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum eigensolvers (VQEs) are successful algorithms for studying physical systems on quantum computers. Recently, they were extended to the measurement-based model of quantum computing, bringing resource graph states and their advantages into the realm of quantum simulation. In this work, we incorporate such ideas into traditional VQE circuits. This enables novel problem-informed designs and versatile implementations of many-body Hamiltonians. We showcase our approach on real superconducting quantum computers by performing VQE simulations of testbed systems including the perturbed planar code, Z2 lattice gauge theory, 1D quantum chromodynamics, and the LiH molecule.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum-classical simulation of quantum field theory by quantum circuit
learning [0.0]
We employ quantum circuit learning to simulate quantum field theories (QFTs)
We find that our predictions closely align with the results of rigorous classical calculations.
This hybrid quantum-classical approach illustrates the feasibility of efficiently simulating large-scale QFTs on cutting-edge quantum devices.
arXiv Detail & Related papers (2023-11-27T20:18:39Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Assisted quantum simulation of open quantum systems [0.0]
We introduce the quantum-assisted quantum algorithm, which reduces the circuit depth of UQA via NISQ technology.
We present two quantum-assisted quantum algorithms for simulating open quantum systems.
arXiv Detail & Related papers (2023-02-26T11:41:02Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Simulating molecules using the VQE algorithm on Qiskit [0.0]
We provide the implementation of the Variational Quantum Eigensolver algorithm for finding the ground state energy of a hydrogen molecule on Qiskit library for python.
arXiv Detail & Related papers (2022-01-08T15:05:32Z) - QuantumSkynet: A High-Dimensional Quantum Computing Simulator [0.0]
Current implementations of quantum computing simulators are limited to two-level quantum systems.
Recent advances in high-dimensional quantum computing systems have demonstrated the viability of working with multi-level superposition and entanglement.
We introduce QuantumSkynet, a novel high-dimensional cloud-based quantum computing simulator.
arXiv Detail & Related papers (2021-06-30T06:28:18Z) - Digital quantum simulation of open quantum systems using quantum
imaginary time evolution [0.0]
We report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation.
Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware.
arXiv Detail & Related papers (2021-04-15T23:48:06Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.