Evaluating geospatial context information for travel mode detection
- URL: http://arxiv.org/abs/2305.19428v2
- Date: Mon, 16 Oct 2023 08:50:00 GMT
- Title: Evaluating geospatial context information for travel mode detection
- Authors: Ye Hong, Emanuel St\"udeli, Martin Raubal
- Abstract summary: We propose an analytical pipeline to assess the contribution of geospatial context information for travel mode detection.
We report that features describing relationships with infrastructure networks, such as the distance to the railway or road network, significantly contribute to the model's prediction.
We finally reveal that geospatial contexts have distinct contributions in identifying different travel modes.
- Score: 2.4004628912753234
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Detecting travel modes from global navigation satellite system (GNSS)
trajectories is essential for understanding individual travel behavior and a
prerequisite for achieving sustainable transport systems. While studies have
acknowledged the benefits of incorporating geospatial context information into
travel mode detection models, few have summarized context modeling approaches
and analyzed the significance of these context features, hindering the
development of an efficient model. Here, we identify context representations
from related work and propose an analytical pipeline to assess the contribution
of geospatial context information for travel mode detection based on a random
forest model and the SHapley Additive exPlanation (SHAP) method. Through
experiments on a large-scale GNSS tracking dataset, we report that features
describing relationships with infrastructure networks, such as the distance to
the railway or road network, significantly contribute to the model's
prediction. Moreover, features related to the geospatial point entities help
identify public transport travel, but most land-use and land-cover features
barely contribute to the task. We finally reveal that geospatial contexts have
distinct contributions in identifying different travel modes, providing
insights into selecting appropriate context information and modeling
approaches. The results from this study enhance our understanding of the
relationship between movement and geospatial context and guide the
implementation of effective and efficient transport mode detection models.
Related papers
- EarthMapper: Visual Autoregressive Models for Controllable Bidirectional Satellite-Map Translation [50.433911327489554]
We introduce EarthMapper, a novel framework for controllable satellite-map translation.
We also contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities.
experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance.
arXiv Detail & Related papers (2025-04-28T02:41:12Z) - Context-Enhanced Multi-View Trajectory Representation Learning: Bridging the Gap through Self-Supervised Models [27.316692263196277]
MVTraj is a novel multi-view modeling method for trajectory representation learning.
It integrates diverse contextual knowledge, from GPS to road network and points-of-interest to provide a more comprehensive understanding of trajectory data.
Extensive experiments on real-world datasets demonstrate that MVTraj significantly outperforms existing baselines in tasks associated with various spatial views.
arXiv Detail & Related papers (2024-10-17T03:56:12Z) - Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Efficient Data Representation for Motion Forecasting: A Scene-Specific Trajectory Set Approach [12.335528093380631]
This study introduces a novel approach for generating scene-specific trajectory sets tailored to different contexts.
A deterministic goal sampling algorithm identifies relevant map regions, while our Recursive In-Distribution Subsampling (RIDS) method enhances trajectory plausibility.
Experiments on the Argoverse 2 dataset demonstrate that our method achieves up to a 10% improvement in Driving Area Compliance.
arXiv Detail & Related papers (2024-07-30T11:06:39Z) - Heterogeneous Graph Neural Networks with Post-hoc Explanations for Multi-modal and Explainable Land Use Inference [11.753345219488745]
We introduce an explainable framework for inferring land use that synergises heterogeneous graph neural networks (HGNs) with Explainable AI techniques.
Experiments demonstrate that the proposed HGNs significantly outperform baseline graph neural networks for all six land-use indicators.
These analyses demonstrate that the proposed HGNs can suitably support urban stakeholders in their urban planning and policy-making.
arXiv Detail & Related papers (2024-06-19T17:39:10Z) - GOMAA-Geo: GOal Modality Agnostic Active Geo-localization [49.599465495973654]
We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
arXiv Detail & Related papers (2024-06-04T02:59:36Z) - BEVBert: Multimodal Map Pre-training for Language-guided Navigation [75.23388288113817]
We propose a new map-based pre-training paradigm that is spatial-aware for use in vision-and-language navigation (VLN)
We build a local metric map to explicitly aggregate incomplete observations and remove duplicates, while modeling navigation dependency in a global topological map.
Based on the hybrid map, we devise a pre-training framework to learn a multimodal map representation, which enhances spatial-aware cross-modal reasoning thereby facilitating the language-guided navigation goal.
arXiv Detail & Related papers (2022-12-08T16:27:54Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
We present a novel dataset and modeling framework designed to study motion planning in understructured environments.
We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - A semi-supervised geometric-driven methodology for supervised fishing
activity detection on multi-source AIS tracking messages [11.969292109862856]
This paper proposes a geometric-driven semi-supervised approach for fishing activity detection from AIS data.
We show how to explore the information included in the messages to extract features describing the geometry of the vessel route.
We propose a solution using recurrent neural networks on AIS data streams with roughly 87% of the overall $F$-score on the whole trajectories of 50 different unseen fishing vessels.
arXiv Detail & Related papers (2022-07-12T13:17:37Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
We introduce a novel neural network framework termed Cross-Modal Message Propagation Network (CMMPNet)
CMMPNet is composed of two deep Auto-Encoders for modality-specific representation learning and a tailor-designed Dual Enhancement Module for cross-modal representation refinement.
Experiments on three real-world benchmarks demonstrate the effectiveness of our CMMPNet for robust road extraction.
arXiv Detail & Related papers (2021-11-30T04:30:10Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z) - Learning Geo-Contextual Embeddings for Commuting Flow Prediction [20.600183945696863]
Predicting commuting flows based on infrastructure and land-use information is critical for urban planning and public policy development.
Conventional models, such as gravity model, are mainly derived from physics principles and limited by their predictive power in real-world scenarios.
We propose Geo-contextual Multitask Embedding Learner (GMEL), a model that captures the spatial correlations from geographic contextual information for commuting flow prediction.
arXiv Detail & Related papers (2020-05-04T17:45:18Z) - Counterfactual Vision-and-Language Navigation via Adversarial Path Sampling [65.99956848461915]
Vision-and-Language Navigation (VLN) is a task where agents must decide how to move through a 3D environment to reach a goal.
One of the problems of the VLN task is data scarcity since it is difficult to collect enough navigation paths with human-annotated instructions for interactive environments.
We propose an adversarial-driven counterfactual reasoning model that can consider effective conditions instead of low-quality augmented data.
arXiv Detail & Related papers (2019-11-17T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.