論文の概要: Efficient PDE-Constrained optimization under high-dimensional
uncertainty using derivative-informed neural operators
- arxiv url: http://arxiv.org/abs/2305.20053v1
- Date: Wed, 31 May 2023 17:26:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 14:52:14.480288
- Title: Efficient PDE-Constrained optimization under high-dimensional
uncertainty using derivative-informed neural operators
- Title(参考訳): 微分インフォームド・ニューラル演算子を用いた高次元不確かさ下での効率的なPDE制約最適化
- Authors: Dingcheng Luo, Thomas O'Leary-Roseberry, Peng Chen, Omar Ghattas
- Abstract要約: 大規模偏微分方程式(PDE)を高次元ランダムパラメータで解くための新しい枠組みを提案する。
我々は、そのようなニューラル演算子をマルチインプット還元ベースインフォメーションニューラル演算子(MR-DINO)と呼ぶ。
MR-DINOは103ドル~107ドルで実行時間を短縮し,標準PDEソリューションと同等の精度のOUUソリューションを生成可能であることを示す。
- 参考スコア(独自算出の注目度): 6.296120102486062
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel machine learning framework for solving optimization
problems governed by large-scale partial differential equations (PDEs) with
high-dimensional random parameters. Such optimization under uncertainty (OUU)
problems may be computational prohibitive using classical methods, particularly
when a large number of samples is needed to evaluate risk measures at every
iteration of an optimization algorithm, where each sample requires the solution
of an expensive-to-solve PDE. To address this challenge, we propose a new
neural operator approximation of the PDE solution operator that has the
combined merits of (1) accurate approximation of not only the map from the
joint inputs of random parameters and optimization variables to the PDE state,
but also its derivative with respect to the optimization variables, (2)
efficient construction of the neural network using reduced basis architectures
that are scalable to high-dimensional OUU problems, and (3) requiring only a
limited number of training data to achieve high accuracy for both the PDE
solution and the OUU solution. We refer to such neural operators as multi-input
reduced basis derivative informed neural operators (MR-DINOs). We demonstrate
the accuracy and efficiency our approach through several numerical experiments,
i.e. the risk-averse control of a semilinear elliptic PDE and the steady state
Navier--Stokes equations in two and three spatial dimensions, each involving
random field inputs. Across the examples, MR-DINOs offer $10^{3}$--$10^{7}
\times$ reductions in execution time, and are able to produce OUU solutions of
comparable accuracies to those from standard PDE based solutions while being
over $10 \times$ more cost-efficient after factoring in the cost of
construction.
- Abstract(参考訳): 大規模偏微分方程式(PDE)に支配される最適化問題を高次元ランダムパラメータで解くための新しい機械学習フレームワークを提案する。
このような不確実性(OUU)問題下での最適化は、古典的な手法を用いて計算が禁止される可能性があり、特に多くのサンプルが最適化アルゴリズムの繰り返しにおけるリスク測定の評価に必要であり、各サンプルは高価なPDEの解を必要とする。
To address this challenge, we propose a new neural operator approximation of the PDE solution operator that has the combined merits of (1) accurate approximation of not only the map from the joint inputs of random parameters and optimization variables to the PDE state, but also its derivative with respect to the optimization variables, (2) efficient construction of the neural network using reduced basis architectures that are scalable to high-dimensional OUU problems, and (3) requiring only a limited number of training data to achieve high accuracy for both the PDE solution and the OUU solution.
このようなニューラル演算子を,MR-DINO(Multi-Input reduced basis derived Neural operator)と呼ぶ。
本研究では, 半線形楕円型pdeと定常navier-stokes方程式の2次元および3次元の確率場入力によるリスク-逆制御について, 数値実験を行い, このアプローチの精度と効率を実証する。
MR-DINOsは、一般的なPDEベースのソリューションと同等の精度のOUUソリューションを、建設コストのファクタリング後10ドル以上のコスト効率で作成することができる。
関連論文リスト
- Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
この研究はデータ駆動逆最適化(IO)に対処する。
目的は最適化モデルにおける未知のパラメータを、最適あるいは準最適と仮定できる観測された決定から推定することである。
論文 参考訳(メタデータ) (2024-05-28T06:52:17Z) - Approximation of Solution Operators for High-dimensional PDEs [2.3076986663832044]
進化的偏微分方程式の解演算子を近似する有限次元制御法を提案する。
結果は、ハミルトン・ヤコビ・ベルマン方程式を解くための実世界の応用を含む、いくつかの高次元PDEに対して提示される。
論文 参考訳(メタデータ) (2024-01-18T21:45:09Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - The ADMM-PINNs Algorithmic Framework for Nonsmooth PDE-Constrained Optimization: A Deep Learning Approach [1.9030954416586594]
乗算器の交互方向法(ADMM)と物理インフォームドニューラルネットワーク(PINN)の組み合わせについて検討した。
結果として得られるADMM-PINNのアルゴリズムフレームワークは、PINNの適用範囲を大幅に拡大し、PDE制約された最適化問題の非滑らかなケースに拡張する。
異なるプロトタイプアプリケーションを用いてADMM-PINNsアルゴリズムフレームワークの有効性を検証する。
論文 参考訳(メタデータ) (2023-02-16T14:17:30Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Speeding up Computational Morphogenesis with Online Neural Synthetic
Gradients [51.42959998304931]
現代科学および工学の適用の広い範囲は制約として部分的な微分方程式(PDEs)のシステムとの最適化問題として定式化されます。
これらのPDE制約最適化問題は通常、標準のDisretize-then-optimizeアプローチで解決される。
オンラインニューラル合成勾配(ONSG)を用いたPDE制約最適化の高速化のための新しい2スケール最適化手法を提案する。
論文 参考訳(メタデータ) (2021-04-25T22:43:51Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。