論文の概要: A Probabilistic Relaxation of the Two-Stage Object Pose Estimation
Paradigm
- arxiv url: http://arxiv.org/abs/2306.00892v1
- Date: Thu, 1 Jun 2023 16:50:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-02 14:28:47.077385
- Title: A Probabilistic Relaxation of the Two-Stage Object Pose Estimation
Paradigm
- Title(参考訳): 2段階オブジェクトポス推定パラダイムの確率的緩和
- Authors: Onur Beker
- Abstract要約: オブジェクトポーズ推定のためのマッチングのない確率的定式化を提案する。
視覚的対応と幾何学的アライメントの両方を統一的かつ同時に最適化することができる。
これは、おそらくのポーズの分布全体の異なる可算モードを表現することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing object pose estimation methods commonly require a one-to-one point
matching step that forces them to be separated into two consecutive stages:
visual correspondence detection (e.g., by matching feature descriptors as part
of a perception front-end) followed by geometric alignment (e.g., by optimizing
a robust estimation objective for pointcloud registration or
perspective-n-point). Instead, we propose a matching-free probabilistic
formulation with two main benefits: i) it enables unified and concurrent
optimization of both visual correspondence and geometric alignment, and ii) it
can represent different plausible modes of the entire distribution of likely
poses. This in turn allows for a more graceful treatment of geometric
perception scenarios where establishing one-to-one matches between points is
conceptually ill-defined, such as textureless, symmetrical and/or occluded
objects and scenes where the correct pose is uncertain or there are multiple
equally valid solutions.
- Abstract(参考訳): 既存のオブジェクトポーズ推定法では、視覚対応検出(知覚フロントエンドの一部として特徴記述子をマッチングするなど)と幾何学的アライメント(例えば、ポイントクラウド登録のための堅牢な推定目標を最適化するなど)という、2つの連続的な段階に分けなければならない。
代わりに2つの主な利点を持つマッチングフリーな確率的定式化を提案する。
一 視覚対応と幾何アライメントの両面の統一及び同時最適化を可能にすること。
二 有望なポーズの分布の異なる妥当なモードを表わすことができる。
これにより、幾何学的認識のシナリオをより優雅に扱えるようになり、例えばテクスチャレス、対称的、あるいは隠蔽されたオブジェクトや、正しいポーズが不確かであるか、あるいは複数の等しく有効な解が存在する場面など、ポイント間の一対一の一致が概念的に不明確になる。
関連論文リスト
- End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation [5.21401636701889]
最先端の6Dオブジェクトのポーズ推定器は、オブジェクト観察によってオブジェクトのポーズを直接予測する。
最先端アルゴリズムGDRNPPを再構成し,EPRO-GDRを導入する。
提案手法は,1つのポーズではなく1つのポーズ分布を予測することで,最先端の単一ビューのポーズ推定を改善することができることを示す。
論文 参考訳(メタデータ) (2024-09-18T09:11:31Z) - DVMNet: Computing Relative Pose for Unseen Objects Beyond Hypotheses [59.51874686414509]
現在のアプローチは、多数の離散的なポーズ仮説を持つ連続的なポーズ表現を近似している。
本稿では,DVMNet(Deep Voxel Matching Network)を提案する。
提案手法は,最先端の手法に比べて計算コストの低い新しいオブジェクトに対して,より正確なポーズ推定を行う。
論文 参考訳(メタデータ) (2024-03-20T15:41:32Z) - Q-REG: End-to-End Trainable Point Cloud Registration with Surface
Curvature [81.25511385257344]
本稿では、リッチな幾何学的情報を用いて、単一の対応から剛性ポーズを推定する新しい解Q-REGを提案する。
Q-REGは、堅牢な推定を徹底的な探索として形式化し、エンドツーエンドのトレーニングを可能にする。
実験では、Q-REGは対応マッチング法に非依存であり、推論とエンドツーエンドトレーニングの両方で使用した場合に一貫した改善を提供する。
論文 参考訳(メタデータ) (2023-09-27T20:58:53Z) - IMP: Iterative Matching and Pose Estimation with Adaptive Pooling [34.36397639248686]
我々はEIMPと呼ばれるテキストbfefficient IMPを提案し、潜在的に一致しないキーポイントを動的に破棄する。
YFCC100m、Scannet、Aachen Day-Nightのデータセットに対する実験により、提案手法は精度と効率の点で従来の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-04-28T13:25:50Z) - Object-based SLAM utilizing unambiguous pose parameters considering
general symmetry types [20.579218922577244]
異なる視点での観測が同一である対称物体は、同時局在化とマッピングの性能を低下させる可能性がある。
本研究は,対称物体の存在下でも,カメラや物体の姿勢を頑健に最適化するシステムを提案する。
論文 参考訳(メタデータ) (2023-03-13T03:07:59Z) - 6DOF Pose Estimation of a 3D Rigid Object based on Edge-enhanced Point
Pair Features [20.33119373900788]
本稿では,点対特徴量(PPF)に基づく効率的な6次元ポーズ推定手法を提案する。
エッジマッチング度を計算することにより、対称曖昧性を解決するために、ポーズ仮説の検証手法を提案する。
論文 参考訳(メタデータ) (2022-09-17T07:05:50Z) - Probabilistic Warp Consistency for Weakly-Supervised Semantic
Correspondences [118.6018141306409]
本稿では,セマンティックマッチングのための弱教師付き学習目標である確率ワープ一貫性を提案する。
まず、同じオブジェクトクラスの異なるインスタンスを表現したペアで、既知のワープを画像の1つに適用することで、画像トリプルを構築する。
我々の目的はまた、キーポイントアノテーションと組み合わせることで、強く監督された体制を大幅に改善する。
論文 参考訳(メタデータ) (2022-03-08T18:55:11Z) - Semi-supervised Dense Keypoints Using Unlabeled Multiview Images [22.449168666514677]
本稿では,ラベルのないマルチビュー画像を用いて高密度なキーポイント検出器を学習するための,エンド・ツー・エンドの半教師付きフレームワークを提案する。
鍵となる課題は、複数のビューで密接なキーポイント間の正確な対応を見つけることである。
2つの望ましい性質を符号化する新しい確率的極性制約を導出する。
論文 参考訳(メタデータ) (2021-09-20T04:57:57Z) - Category Level Object Pose Estimation via Neural Analysis-by-Synthesis [64.14028598360741]
本稿では、勾配に基づくフィッティング法とパラメトリックニューラルネットワーク合成モジュールを組み合わせる。
画像合成ネットワークは、ポーズ設定空間を効率的に分散するように設計されている。
本研究では,2次元画像のみから高精度に物体の向きを復元できることを実験的に示す。
論文 参考訳(メタデータ) (2020-08-18T20:30:47Z) - Object-Centric Multi-View Aggregation [86.94544275235454]
本稿では,オブジェクトのスパースなビュー集合を集約して,半単純3次元表現を容積特徴格子の形で計算する手法を提案する。
我々のアプローチの鍵となるのは、カメラのポーズを明示することなく、ビューを持ち上げることができるオブジェクト中心の標準3D座標システムである。
画素から標準座標系への対称対応マッピングの計算により、未知の領域への情報伝達がより良くなることを示す。
論文 参考訳(メタデータ) (2020-07-20T17:38:31Z) - Point-Set Anchors for Object Detection, Instance Segmentation and Pose
Estimation [85.96410825961966]
中心点から抽出された画像の特徴は、離れたキーポイントや境界ボックスの境界を予測するための限られた情報を含んでいると論じる。
推論を容易にするために,より有利な位置に配置された点集合からの回帰を行うことを提案する。
我々は、オブジェクト検出、インスタンス分割、人間のポーズ推定にPoint-Set Anchorsと呼ばれるこのフレームワークを適用した。
論文 参考訳(メタデータ) (2020-07-06T15:59:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。