論文の概要: Training neural operators to preserve invariant measures of chaotic attractors
- arxiv url: http://arxiv.org/abs/2306.01187v3
- Date: Tue, 16 Apr 2024 23:01:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 00:26:13.230205
- Title: Training neural operators to preserve invariant measures of chaotic attractors
- Title(参考訳): カオスアトラクションの不変性維持のためのニューラルオペレーターの訓練
- Authors: Ruoxi Jiang, Peter Y. Lu, Elena Orlova, Rebecca Willett,
- Abstract要約: 対照的な学習フレームワークは、最適輸送手法と同様に、力学の統計的性質を保存可能であることを示す。
本手法は,カオストラクタの不変な測定値を保存するために実験的に示された。
- 参考スコア(独自算出の注目度): 10.61157131995679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chaotic systems make long-horizon forecasts difficult because small perturbations in initial conditions cause trajectories to diverge at an exponential rate. In this setting, neural operators trained to minimize squared error losses, while capable of accurate short-term forecasts, often fail to reproduce statistical or structural properties of the dynamics over longer time horizons and can yield degenerate results. In this paper, we propose an alternative framework designed to preserve invariant measures of chaotic attractors that characterize the time-invariant statistical properties of the dynamics. Specifically, in the multi-environment setting (where each sample trajectory is governed by slightly different dynamics), we consider two novel approaches to training with noisy data. First, we propose a loss based on the optimal transport distance between the observed dynamics and the neural operator outputs. This approach requires expert knowledge of the underlying physics to determine what statistical features should be included in the optimal transport loss. Second, we show that a contrastive learning framework, which does not require any specialized prior knowledge, can preserve statistical properties of the dynamics nearly as well as the optimal transport approach. On a variety of chaotic systems, our method is shown empirically to preserve invariant measures of chaotic attractors.
- Abstract(参考訳): カオスシステムは、初期状態の小さな摂動がトラジェクトリを指数的な速度で発散させるため、長期の水平予測を難しくする。
この設定では、ニューラルネットワークオペレータは2乗誤差損失を最小限に抑えながら、正確な短期予測が可能でありながら、長い時間的地平線上での力学の統計的または構造的特性の再現に失敗し、縮退する結果をもたらすことができる。
本稿では,力学の時間不変な統計特性を特徴付けるカオス的誘引器の不変測度を保存するための代替フレームワークを提案する。
具体的には、多環境環境(各サンプル軌道はわずかに異なるダイナミクスによって制御されている)において、ノイズの多いデータを用いたトレーニングのための2つの新しいアプローチを検討する。
まず、観測されたダイナミクスとニューラル演算子の出力との最適輸送距離に基づく損失を提案する。
このアプローチは、最適な輸送損失にどの統計的特徴を含めるべきかを決定するために、基礎となる物理学の専門知識を必要とする。
第二に、特定の事前知識を必要としないコントラスト学習フレームワークは、最適輸送手法と同様に、力学の統計的特性をほぼ保存できることを示す。
種々のカオスシステムにおいて, カオストラクタの不変測度を保存するために, 実験により提案手法を実証的に示す。
関連論文リスト
- Improved deep learning of chaotic dynamical systems with multistep penalty losses [0.0]
カオスシステムの長期的な振る舞いを予測することは、依然として恐ろしい課題である。
本稿では,最近提案された多段階ペナルティ演算子を活用することで,これらの課題に対処する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-10-08T00:13:57Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Neural Interaction Energy for Multi-Agent Trajectory Prediction [55.098754835213995]
ニューラル・インタラクション・エナジー(MATE)によるマルチエージェント軌道予測(Multi-Agent Trajectory Prediction)というフレームワークを導入する。
MATEは神経相互作用エネルギーを用いてエージェントの対話運動を評価する。
時間的安定性を高めるために,エージェント間相互作用制約とエージェント内動作制約という2つの制約を導入する。
論文 参考訳(メタデータ) (2024-04-25T12:47:47Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
最適化トラジェクトリのリッチな方向構造をポイントワイズパラメータで解析する。
トレーニング中のスカラーバッチノルムパラメータは,ネットワーク全体のトレーニング性能と一致していることを示す。
論文 参考訳(メタデータ) (2024-03-12T07:32:47Z) - Tipping Point Forecasting in Non-Stationary Dynamics on Function Spaces [78.08947381962658]
タップポイントは急激で、急激で、しばしば非定常力学系の進化における不可逆的な変化である。
我々は、関数空間間のマッピングを学習する新しいリカレントニューラル演算子(RNO)を用いて、そのような非定常系の進化を学習する。
本稿では,物理制約から逸脱をモニタリングすることで,チップ点の予測を行う共形予測フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-17T05:42:27Z) - Probabilistic Trajectory Prediction with Structural Constraints [38.90152893402733]
この研究は、環境中の動的物体の運動軌跡を予測する問題に対処する。
最近の動きパターン予測の進歩は、しばしば観察された軌跡から動きパターンを外挿する機械学習技術に依存している。
本稿では,確率論的学習と制約付き軌道最適化を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-09T03:48:14Z) - Reinforcement learning of rare diffusive dynamics [0.0]
本稿では,強化学習を用いて希少分子動力学軌道を直接探究する方法を提案する。
我々は,有限時間における構成空間の領域間の遷移を条件とした軌道と,時間積分量の経時的変動を示す軌道を考える。
いずれの場合も、強化学習技術を用いて、条件付き軌道アンサンブルと駆動型軌道とのクルバック・リーバの発散を最小限に抑える付加力の最適化を行う。
論文 参考訳(メタデータ) (2021-05-10T13:00:15Z) - Short- and long-term prediction of a chaotic flow: A physics-constrained
reservoir computing approach [5.37133760455631]
乱流せん断流モデルにおける極端な事象や長期速度統計を時間精度で予測する,貯留層計算に基づく物理制約型機械学習手法を提案する。
両手法の組み合わせは, 乱流の自己持続過程モデルにおいて, 速度統計を正確に再現し, 極端な事象の発生と振幅を予測することができることを示す。
論文 参考訳(メタデータ) (2021-02-15T12:29:09Z) - Physics-aware, probabilistic model order reduction with guaranteed
stability [0.0]
実効, 低次元, 粗粒度ダイナミクスモデル学習のための生成的枠組みを提案する。
粒子力学のマルチスケール物理系におけるその有効性と精度を実証する。
論文 参考訳(メタデータ) (2021-01-14T19:16:51Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。