論文の概要: Uniform Convergence of Deep Neural Networks with Lipschitz Continuous
Activation Functions and Variable Widths
- arxiv url: http://arxiv.org/abs/2306.01692v1
- Date: Fri, 2 Jun 2023 17:07:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-05 14:03:08.298464
- Title: Uniform Convergence of Deep Neural Networks with Lipschitz Continuous
Activation Functions and Variable Widths
- Title(参考訳): リプシッツ連続活性化関数と可変幅を持つディープニューラルネットワークの一様収束
- Authors: Yuesheng Xu and Haizhang Zhang
- Abstract要約: リプシッツ連続活性化関数と可変幅の重み行列を持つディープニューラルネットワークを考える。
特に、畳み込みニューラルネットワークは、幅が増大する重み行列を持つ特殊なディープニューラルネットワークであるため、マスクシーケンスに条件を提示する。
活性化関数上のリプシッツ連続性仮定は、アプリケーションでよく使われる活性化関数のほとんどを我々の理論に含めることができる。
- 参考スコア(独自算出の注目度): 3.0069322256338906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider deep neural networks with a Lipschitz continuous activation
function and with weight matrices of variable widths. We establish a uniform
convergence analysis framework in which sufficient conditions on weight
matrices and bias vectors together with the Lipschitz constant are provided to
ensure uniform convergence of the deep neural networks to a meaningful function
as the number of their layers tends to infinity. In the framework, special
results on uniform convergence of deep neural networks with a fixed width,
bounded widths and unbounded widths are presented. In particular, as
convolutional neural networks are special deep neural networks with weight
matrices of increasing widths, we put forward conditions on the mask sequence
which lead to uniform convergence of resulting convolutional neural networks.
The Lipschitz continuity assumption on the activation functions allows us to
include in our theory most of commonly used activation functions in
applications.
- Abstract(参考訳): リプシッツ連続活性化関数と可変幅の重み行列を持つディープニューラルネットワークを考える。
リプシッツ定数とともに、重み行列とバイアスベクトルの十分な条件が与えられ、それらの層数が無限大になる傾向にあるように、ディープニューラルネットワークの均一収束を有意義な関数に保証する一様収束解析フレームワークを確立する。
本フレームワークでは、固定幅、有界幅、非有界幅を有するディープニューラルネットワークの一様収束に関する特別結果を示す。
特に、畳み込みニューラルネットワークは、幅が増大する重み行列を持つ特殊な深層ニューラルネットワークであるので、畳み込みニューラルネットワークの一様収束につながるマスクシーケンスの条件を提示する。
活性化関数上のリプシッツ連続性仮定は、アプリケーションでよく使われる活性化関数のほとんどを我々の理論に含めることができる。
関連論文リスト
- Proportional infinite-width infinite-depth limit for deep linear neural networks [0.16385815610837165]
大規模ネットワークのコンテキストにおけるランダムパラメータを持つ線形ニューラルネットワークの分布特性について検討し,各層あたりのニューロン数に比例して層数が分散することを示した。
出力間の相関を保った非ガウス分布を導出し, 深さと幅の両方が分岐するが, 一定比を維持するような比例極限を探索する。
論文 参考訳(メタデータ) (2024-11-22T11:25:52Z) - Spectral complexity of deep neural networks [2.099922236065961]
我々は,ネットワークアーキテクチャの複雑さを特徴付けるために,制限場の角パワースペクトルを用いる。
そこで我々は,ニューラルネットワークを低次,スパース,高次と分類する。
本稿では,この分類が標準アクティベーション関数の様々な特徴,特にReLUネットワークの空間特性を如何に強調するかを示す。
論文 参考訳(メタデータ) (2024-05-15T17:55:05Z) - Wide Deep Neural Networks with Gaussian Weights are Very Close to
Gaussian Processes [1.0878040851638]
ネットワーク出力と対応するガウス近似との距離は、ネットワークの幅と逆向きにスケールし、中心極限定理によって提案されるネーブよりも高速な収束を示すことを示す。
また、(有限)トレーニングセットで評価されたネットワーク出力の有界リプシッツ関数である場合、ネットワークの正確な後部分布の理論的近似を求めるために境界を適用した。
論文 参考訳(メタデータ) (2023-12-18T22:29:40Z) - Gradient Descent in Neural Networks as Sequential Learning in RKBS [63.011641517977644]
初期重みの有限近傍にニューラルネットワークの正確な電力系列表現を構築する。
幅にかかわらず、勾配降下によって生成されたトレーニングシーケンスは、正規化された逐次学習によって正確に複製可能であることを証明した。
論文 参考訳(メタデータ) (2023-02-01T03:18:07Z) - Robust Training and Verification of Implicit Neural Networks: A
Non-Euclidean Contractive Approach [64.23331120621118]
本稿では,暗黙的ニューラルネットワークのトレーニングとロバスト性検証のための理論的および計算的枠組みを提案する。
組込みネットワークを導入し、組込みネットワークを用いて、元のネットワークの到達可能な集合の超近似として$ell_infty$-normボックスを提供することを示す。
MNISTデータセット上で暗黙的なニューラルネットワークをトレーニングするためにアルゴリズムを適用し、我々のモデルの堅牢性と、文献における既存のアプローチを通じてトレーニングされたモデルを比較する。
論文 参考訳(メタデータ) (2022-08-08T03:13:24Z) - The Sample Complexity of One-Hidden-Layer Neural Networks [57.6421258363243]
本研究では,スカラー値を持つ一層ネットワークのクラスとユークリッドノルムで有界な入力について検討する。
隠蔽層重み行列のスペクトルノルムの制御は、一様収束を保証するには不十分であることを示す。
スペクトルノルム制御が十分であることを示す2つの重要な設定を解析する。
論文 参考訳(メタデータ) (2022-02-13T07:12:02Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - Large-width functional asymptotics for deep Gaussian neural networks [2.7561479348365734]
重みとバイアスが独立であり、ガウス分布に従って同一に分布する完全連結フィードフォワード深層ニューラルネットワークを考える。
この結果は、無限に広い深層ニューラルネットワークとプロセス間の相互作用に関する最近の理論的研究に寄与する。
論文 参考訳(メタデータ) (2021-02-20T10:14:37Z) - A Convergence Theory Towards Practical Over-parameterized Deep Neural
Networks [56.084798078072396]
ネットワーク幅と収束時間の両方で既知の理論境界を大幅に改善することにより、理論と実践のギャップを埋める一歩を踏み出します。
本研究では, サンプルサイズが2次幅で, 両者の時間対数で線形なネットワークに対して, 地球最小値への収束が保証されていることを示す。
私たちの分析と収束境界は、いつでも合理的なサイズの同等のRELUネットワークに変換できる固定アクティベーションパターンを備えたサロゲートネットワークの構築によって導出されます。
論文 参考訳(メタデータ) (2021-01-12T00:40:45Z) - On Lipschitz Regularization of Convolutional Layers using Toeplitz
Matrix Theory [77.18089185140767]
リプシッツ正則性は現代のディープラーニングの重要な性質として確立されている。
ニューラルネットワークのリプシッツ定数の正確な値を計算することはNPハードであることが知られている。
より厳密で計算が容易な畳み込み層に対する新しい上限を導入する。
論文 参考訳(メタデータ) (2020-06-15T13:23:34Z) - Approximating Lipschitz continuous functions with GroupSort neural
networks [3.416170716497814]
近年の敵攻撃とワッサーシュタインGANはリプシッツ定数が制限されたニューラルネットワークの使用を提唱している。
特に、これらのネットワークが任意のリプシッツ連続部分線型関数をどのように表現できるかを示す。
また、それらがリプシッツ連続函数の近似に適しており、深さと大きさの両方の上限を示すことを証明する。
論文 参考訳(メタデータ) (2020-06-09T13:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。