論文の概要: Explicit Neural Surfaces: Learning Continuous Geometry With Deformation
Fields
- arxiv url: http://arxiv.org/abs/2306.02956v3
- Date: Mon, 11 Dec 2023 06:05:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-13 02:33:59.092952
- Title: Explicit Neural Surfaces: Learning Continuous Geometry With Deformation
Fields
- Title(参考訳): 明示的な神経表面:変形場を用いた連続幾何学の学習
- Authors: Thomas Walker, Octave Mariotti, Amir Vaxman, Hakan Bilen
- Abstract要約: 本稿では、既知の基底領域からの変形場と位相をエンコードする効率的な滑らかな表面表現であるExplicit Neural Surfaces (ENS)を紹介する。
暗黙の面と比較して、ENSは高速で、数桁の速度で推論を行うことができる。
- 参考スコア(独自算出の注目度): 33.38609930708073
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce Explicit Neural Surfaces (ENS), an efficient smooth surface
representation that directly encodes topology with a deformation field from a
known base domain. We apply this representation to reconstruct explicit
surfaces from multiple views, where we use a series of neural deformation
fields to progressively transform the base domain into a target shape. By using
meshes as discrete surface proxies, we train the deformation fields through
efficient differentiable rasterization. Using a fixed base domain allows us to
have Laplace-Beltrami eigenfunctions as an intrinsic positional encoding
alongside standard extrinsic Fourier features, with which our approach can
capture fine surface details. Compared to implicit surfaces, ENS trains faster
and has several orders of magnitude faster inference times. The explicit nature
of our approach also allows higher-quality mesh extraction whilst maintaining
competitive surface reconstruction performance and real-time capabilities.
- Abstract(参考訳): 我々は、既知の基底領域からの変形場と直接的にトポロジーを符号化する効率的な滑らかな表面表現であるExplicit Neural Surfaces (ENS)を紹介する。
この表現を、複数のビューから明示的な曲面を再構成するために応用し、一連のニューラルネットワークの変形場を用いて、ベースドメインを徐々にターゲットの形状に変換する。
メッシュを離散的な表面プロキシとして使用することにより,効率的な微分ラスタライズにより変形場を訓練する。
固定基底領域を用いることで、ラプラス・ベルトラミ固有関数を通常の外在的フーリエ特徴とともに内在的な位置符号化として利用でき、それによって、我々のアプローチはきめ細かい表面の詳細を捉えることができる。
暗黙の面と比較して、ENSは高速で、数桁の速度で推論を行うことができる。
このアプローチの明示的な性質は、競争力のある表面再構成性能とリアルタイム能力を維持しながら、高品質なメッシュ抽出を可能にする。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - ND-SDF: Learning Normal Deflection Fields for High-Fidelity Indoor Reconstruction [50.07671826433922]
微妙な幾何を同時に復元し、異なる特徴を持つ領域をまたいだ滑らかさを保つことは自明ではない。
そこで我々は,ND-SDFを提案する。ND-SDFは,通常のシーンとそれ以前のシーンの角偏差を表す正規偏向場を学習する。
本手法は, 壁面や床面などのスムーズなテクスチャ構造を得るだけでなく, 複雑な構造の幾何学的詳細も保存する。
論文 参考訳(メタデータ) (2024-08-22T17:59:01Z) - Implicit-ARAP: Efficient Handle-Guided Deformation of High-Resolution Meshes and Neural Fields via Local Patch Meshing [18.353444950896527]
本稿では,ニューラルサインされた距離場に対する局所パッチメッシュ表現について述べる。
この技術は、フラットパッチメッシュをレベルセット面に投影し変形させることにより、入力SDFのレベルセットの局所領域を識別することができる。
我々は,高分解能メッシュとニューラルフィールドのAs-Rigid-As-Possible変形を計算するために,3次元ニューラルネットワークを利用する2つの異なるパイプラインを導入する。
論文 参考訳(メタデータ) (2024-05-21T16:04:32Z) - DynoSurf: Neural Deformation-based Temporally Consistent Dynamic Surface Reconstruction [93.18586302123633]
本稿では3次元点雲列から時間的に一貫した表面を対応なく再構成する問題について考察する。
テンプレート表面表現と学習可能な変形場を統合した教師なし学習フレームワークDynoSurfを提案する。
実験により、DynoSurfの現在の最先端アプローチに対する顕著な優位性を示した。
論文 参考訳(メタデータ) (2024-03-18T08:58:48Z) - Surface Normal Estimation with Transformers [11.198936434401382]
ノイズと密度の変動を考慮した点群から正規分布を正確に予測する変換器を提案する。
本手法は,合成形状データセットPCPNetと実世界の屋内シーンPCPNNの両方で最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-01-11T08:52:13Z) - Unsupervised Multimodal Surface Registration with Geometric Deep
Learning [3.3403308469369577]
GeoMorphは、皮質表面の画像登録用に設計された新しい幾何学的深層学習フレームワークである。
よりスムーズな変形によるアライメントの改善により,GeoMorphは既存のディープラーニング手法よりも優れていることを示す。
このような汎用性と堅牢性は、様々な神経科学応用に強い可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-21T22:05:00Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
本稿では,ノイズと密度の変動のある点群から正規性を正確に予測できるHSurf-Netという新しい正規推定手法を提案する。
実験結果から, HSurf-Netは, 合成形状データセット上での最先端性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-10-13T16:39:53Z) - Minimal Neural Atlas: Parameterizing Complex Surfaces with Minimal
Charts and Distortion [71.52576837870166]
我々は、新しいアトラスに基づく明示的なニューラルサーフェス表現であるミニマルニューラルアトラスを提案する。
その中核は完全学習可能なパラメトリック領域であり、パラメトリック空間の開平方上で定義された暗黙の確率的占有場によって与えられる。
我々の再構成は、トポロジーと幾何学に関する懸念の分離のため、全体的な幾何学の観点からより正確である。
論文 参考訳(メタデータ) (2022-07-29T16:55:06Z) - Sign-Agnostic CONet: Learning Implicit Surface Reconstructions by
Sign-Agnostic Optimization of Convolutional Occupancy Networks [39.65056638604885]
畳み込み型ネットワークの符号非依存最適化により暗黙的表面再構成を学習する。
この目標をシンプルで効果的な設計で効果的に達成できることを示す。
論文 参考訳(メタデータ) (2021-05-08T03:35:32Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。