論文の概要: Implicit-ARAP: Efficient Handle-Guided Deformation of High-Resolution Meshes and Neural Fields via Local Patch Meshing
- arxiv url: http://arxiv.org/abs/2405.12895v2
- Date: Wed, 30 Oct 2024 12:11:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:22:24.934973
- Title: Implicit-ARAP: Efficient Handle-Guided Deformation of High-Resolution Meshes and Neural Fields via Local Patch Meshing
- Title(参考訳): Implicit-ARAP:局所パッチメッシュによる高分解能メッシュとニューラルフィールドの効率的なハンドルガイド変形
- Authors: Daniele Baieri, Filippo Maggioli, Zorah Lähner, Simone Melzi, Emanuele Rodolà,
- Abstract要約: 本稿では,ニューラルサインされた距離場に対する局所パッチメッシュ表現について述べる。
この技術は、フラットパッチメッシュをレベルセット面に投影し変形させることにより、入力SDFのレベルセットの局所領域を識別することができる。
我々は,高分解能メッシュとニューラルフィールドのAs-Rigid-As-Possible変形を計算するために,3次元ニューラルネットワークを利用する2つの異なるパイプラインを導入する。
- 参考スコア(独自算出の注目度): 18.353444950896527
- License:
- Abstract: In this work, we present the local patch mesh representation for neural signed distance fields. This technique allows to discretize local regions of the level sets of an input SDF by projecting and deforming flat patch meshes onto the level set surface, using exclusively the SDF information and its gradient. Our analysis reveals this method to be more accurate than the standard marching cubes algorithm for approximating the implicit surface. Then, we apply this representation in the setting of handle-guided deformation: we introduce two distinct pipelines, which make use of 3D neural fields to compute As-Rigid-As-Possible deformations of both high-resolution meshes and neural fields under a given set of constraints. We run a comprehensive evaluation of our method and various baselines for neural field and mesh deformation which show both pipelines achieve impressive efficiency and notable improvements in terms of quality of results and robustness. With our novel pipeline, we introduce a scalable approach to solve a well-established geometry processing problem on high-resolution meshes, and pave the way for extending other geometric tasks to the domain of implicit surfaces via local patch meshing.
- Abstract(参考訳): 本稿では,ニューラルサインされた距離場に対する局所的なパッチメッシュ表現について述べる。
この技術は、SDF情報とその勾配のみを用いて、フラットパッチメッシュをレベルセット表面に投影し変形させることにより、入力SDFのレベルセットの局所領域を識別することができる。
解析の結果,この手法は暗黙の表面を近似する標準的なマーチング立方体アルゴリズムよりも精度が高いことがわかった。
次に、この表現をハンドル誘導変形の設定に適用する: 2つの異なるパイプラインを導入し、与えられた制約の下で高分解能メッシュとニューラルフィールドのAs-Rigid-As-Possible変形を計算する。
提案手法を網羅的に評価し,ニューラルネットワークとメッシュの変形に対する各種ベースラインの評価を行い,両パイプラインが優れた効率と,結果の品質とロバスト性において顕著な改善を達成できることを示した。
我々の新しいパイプラインでは、高分解能メッシュ上で確立された幾何処理問題を解決するためのスケーラブルなアプローチを導入し、局所的なパッチメッシュによって他の幾何タスクを暗黙の曲面の領域に拡張する方法を開拓する。
関連論文リスト
- Mesh Denoising Transformer [104.5404564075393]
Mesh Denoisingは、入力メッシュからノイズを取り除き、特徴構造を保存することを目的としている。
SurfaceFormerはTransformerベースのメッシュDenoisingフレームワークのパイオニアだ。
局所曲面記述子(Local Surface Descriptor)として知られる新しい表現は、局所幾何学的複雑さをキャプチャする。
Denoising Transformerモジュールは、マルチモーダル情報を受信し、効率的なグローバル機能アグリゲーションを実現する。
論文 参考訳(メタデータ) (2024-05-10T15:27:43Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
ガウススプレイティング最適化の過程で、その構造が意図的に保存されていない場合、シーンの幾何学は徐々に悪化する。
我々はこの問題を緩和するためにGeoGaussianと呼ばれる新しいアプローチを提案する。
提案するパイプラインは、新しいビュー合成と幾何再構成において最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-03-17T20:06:41Z) - PRS: Sharp Feature Priors for Resolution-Free Surface Remeshing [30.28380889862059]
本稿では,自動特徴検出とリメッシングのためのデータ駆動方式を提案する。
提案アルゴリズムは,Fスコアの26%,知覚値の42%がtextRMSE_textv$である。
論文 参考訳(メタデータ) (2023-11-30T12:15:45Z) - Explicit Neural Surfaces: Learning Continuous Geometry With Deformation
Fields [33.38609930708073]
本稿では、既知の基底領域からの変形場と位相をエンコードする効率的な滑らかな表面表現であるExplicit Neural Surfaces (ENS)を紹介する。
暗黙の面と比較して、ENSは高速で、数桁の速度で推論を行うことができる。
論文 参考訳(メタデータ) (2023-06-05T15:24:33Z) - Neural Vector Fields: Implicit Representation by Explicit Learning [63.337294707047036]
ニューラルベクトル場 (Neural Vector Fields, NVF) という新しい3次元表現法を提案する。
メッシュを直接操作するための明示的な学習プロセスを採用するだけでなく、符号なし距離関数(UDF)の暗黙的な表現も採用している。
提案手法は,まず表面への変位クエリを予測し,テキスト再構成として形状をモデル化する。
論文 参考訳(メタデータ) (2023-03-08T02:36:09Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
本稿では,Deep Implicit Fieldsから表面メッシュを明示的に表現する方法を提案する。
我々の重要な洞察は、暗黙の場摂動が局所的な表面形状にどのように影響するかを推論することによって、最終的に表面サンプルの3次元位置を区別できるということである。
私たちはこれを利用して、そのトポロジを変えることができるDeepMesh – エンドツーエンドの差別化可能なメッシュ表現を定義する。
論文 参考訳(メタデータ) (2021-06-20T20:12:41Z) - Sign-Agnostic CONet: Learning Implicit Surface Reconstructions by
Sign-Agnostic Optimization of Convolutional Occupancy Networks [39.65056638604885]
畳み込み型ネットワークの符号非依存最適化により暗黙的表面再構成を学習する。
この目標をシンプルで効果的な設計で効果的に達成できることを示す。
論文 参考訳(メタデータ) (2021-05-08T03:35:32Z) - Neural Subdivision [58.97214948753937]
本稿では,データ駆動型粗粒度モデリングの新しいフレームワークであるNeural Subdivisionを紹介する。
すべてのローカルメッシュパッチで同じネットワーク重みのセットを最適化するため、特定の入力メッシュや固定属、カテゴリに制約されないアーキテクチャを提供します。
単一の高分解能メッシュでトレーニングしても,本手法は新規な形状に対して合理的な区分を生成する。
論文 参考訳(メタデータ) (2020-05-04T20:03:21Z) - A deep learning approach for the computation of curvature in the
level-set method [0.0]
そこで本研究では,2次元暗黙曲線の平均曲率をレベルセット法で推定する手法を提案する。
我々のアプローチは、様々な解像度の均一な格子に没入した円柱から構築された合成データセットにフィードフォワードニューラルネットワークを適合させることに基づいている。
論文 参考訳(メタデータ) (2020-02-04T00:49:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。