Over-the-Air Federated Learning in Satellite systems
- URL: http://arxiv.org/abs/2306.02996v1
- Date: Mon, 5 Jun 2023 16:06:39 GMT
- Title: Over-the-Air Federated Learning in Satellite systems
- Authors: Edward Akito Carlos, Raphael Pinard, Mitra Hassani
- Abstract summary: Federated learning in satellites offers several advantages.
It ensures data privacy and security, as sensitive data remains on the satellites and is not transmitted to a central location.
By leveraging federated learning, satellites can collaborate and continuously improve their machine learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Federated learning in satellites offers several advantages. Firstly, it
ensures data privacy and security, as sensitive data remains on the satellites
and is not transmitted to a central location. This is particularly important
when dealing with sensitive or classified information. Secondly, federated
learning allows satellites to collectively learn from a diverse set of data
sources, benefiting from the distributed knowledge across the satellite
network. Lastly, the use of federated learning reduces the communication
bandwidth requirements between satellites and the central server, as only model
updates are exchanged instead of raw data. By leveraging federated learning,
satellites can collaborate and continuously improve their machine learning
models while preserving data privacy and minimizing communication overhead.
This enables the development of more intelligent and efficient satellite
systems for various applications, such as Earth observation, weather
forecasting, and space exploration.
Related papers
- Heterogeneity: An Open Challenge for Federated On-board Machine Learning [2.519319150166215]
We present a systematic review of the challenges in the context of the cross-provider use case for Federated Learning.
Such an application presents additional challenges to the Federated Learning paradigm, arising largely from the heterogeneity of such a system.
arXiv Detail & Related papers (2024-08-13T13:56:17Z) - Cooperative Federated Learning over Ground-to-Satellite Integrated
Networks: Joint Local Computation and Data Offloading [33.44828515877944]
We propose a ground-to-satellite cooperative federated learning (FL) methodology to facilitate machine learning service management over remote regions.
Our methodology orchestrates satellite constellations to provide the following key functions during FL.
We show that our methodology can significantly speed up the convergence of FL compared with terrestrial-only and other satellite baseline approaches.
arXiv Detail & Related papers (2023-12-23T22:09:31Z) - FedSN: A Federated Learning Framework over Heterogeneous LEO Satellite Networks [18.213174641216884]
A large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX.
Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc.
We propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites.
arXiv Detail & Related papers (2023-11-02T14:47:06Z) - Secure and Efficient Federated Learning in LEO Constellations using
Decentralized Key Generation and On-Orbit Model Aggregation [1.4952056744888915]
This paper proposes FedSecure, a secure FL approach designed for LEO constellations.
FedSecure preserves the privacy of each satellite's data against eavesdroppers, a curious server, or curious satellites.
It also reduces convergence delay drastically from days to only a few hours, yet achieving high accuracy of up to 85.35%.
arXiv Detail & Related papers (2023-09-04T21:36:46Z) - Collaborative Learning with a Drone Orchestrator [79.75113006257872]
A swarm of intelligent wireless devices train a shared neural network model with the help of a drone.
The proposed framework achieves a significant speedup in training, leading to an average 24% and 87% saving in the drone hovering time.
arXiv Detail & Related papers (2023-03-03T23:46:25Z) - Federated Learning in Satellite Constellations [38.58782102290874]
Federated learning (FL) has recently emerged as a distributed machine learning paradigm for systems with limited and intermittent connectivity.
This paper presents the new context brought to FL by satellite constellations, where the connectivity patterns are significantly different.
arXiv Detail & Related papers (2022-06-01T08:17:25Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
Current maritime communications mainly rely on satellites having meager transmission resources, hence suffering from poorer performance than modern terrestrial wireless networks.
With the growth of transcontinental air traffic, the promising concept of aeronautical ad hoc networking relying on commercial passenger airplanes is potentially capable of enhancing satellite-based maritime communications via air-to-ground and multi-hop air-to-air links.
We propose space-air-ground integrated networks (SAGINs) for supporting ubiquitous maritime communications, where the low-earth-orbit satellite constellations, passenger airplanes, terrestrial base stations, ships, respectively, serve as the space-, air-,
arXiv Detail & Related papers (2021-10-28T14:12:10Z) - Artificial Intelligence for Satellite Communication: A Review [91.3755431537592]
This work provides a general overview of AI, its diverse sub-fields, and its state-of-the-art algorithms.
The application of AI to a wide variety of satellite communication aspects have demonstrated excellent potential, including beam-hopping, anti-jamming, network traffic forecasting, channel modeling, telemetry mining, ionospheric scintillation detecting, interference managing, remote sensing, behavior modeling, space-air-ground integrating, and energy managing.
arXiv Detail & Related papers (2021-01-25T13:01:16Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.