論文の概要: Provable convergence guarantees for black-box variational inference
- arxiv url: http://arxiv.org/abs/2306.03638v3
- Date: Thu, 21 Dec 2023 22:37:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 18:29:49.664384
- Title: Provable convergence guarantees for black-box variational inference
- Title(参考訳): ブラックボックス変分推論における確率収束保証
- Authors: Justin Domke, Guillaume Garrigos and Robert Gower
- Abstract要約: ブラックボックスの変分推論は、最適化が成功する証拠がない状況で広く使われている。
我々は,現実的な推論問題に実際に用いられている手法と同様の手法が収束するという厳密な保証を提供する。
- 参考スコア(独自算出の注目度): 19.421222110188605
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Black-box variational inference is widely used in situations where there is
no proof that its stochastic optimization succeeds. We suggest this is due to a
theoretical gap in existing stochastic optimization proofs: namely the
challenge of gradient estimators with unusual noise bounds, and a composite
non-smooth objective. For dense Gaussian variational families, we observe that
existing gradient estimators based on reparameterization satisfy a quadratic
noise bound and give novel convergence guarantees for proximal and projected
stochastic gradient descent using this bound. This provides rigorous guarantees
that methods similar to those used in practice converge on realistic inference
problems.
- Abstract(参考訳): ブラックボックス変分推論は、確率最適化が成功する証拠がない状況で広く用いられている。
これは既存の確率的最適化の証明の理論的ギャップ、すなわち特異な雑音境界を持つ勾配推定器の挑戦、および合成非滑らかな目的によるものである。
密度ガウス変分族に対しては、再パラメータ化に基づく既存の勾配推定器が二次雑音境界を満たすことを観察し、この境界を用いた近位および近位確率勾配勾配の新規収束保証を与える。
これは、実際に使われるメソッドに似たメソッドが現実的な推論問題に収束するという厳密な保証を提供する。
関連論文リスト
- Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - A Unified Theory of Stochastic Proximal Point Methods without Smoothness [52.30944052987393]
近点法はその数値的安定性と不完全なチューニングに対する頑健性からかなりの関心を集めている。
本稿では,近位点法(SPPM)の幅広いバリエーションの包括的解析について述べる。
論文 参考訳(メタデータ) (2024-05-24T21:09:19Z) - Variance Reduction and Low Sample Complexity in Stochastic Optimization
via Proximal Point Method [5.025654873456757]
本論文は,提案手法の収束性に関する高い確率保証を得るために,低サンプリング複雑性を確立する。
近位サブプロブレムを解くためにサブルーチンが開発され、分散還元のための新しい技術としても機能する。
論文 参考訳(メタデータ) (2024-02-14T07:34:22Z) - Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands [0.0]
本報告では,非漸近的かつ非漸近的保証を伴う非パラメトリック同時信頼バンドの構築問題について検討する。
このアプローチは、パーリー・ウィーナー核がヒルベルト空間を再現する理論に基づいている。
論文 参考訳(メタデータ) (2024-01-28T22:43:33Z) - High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise [96.80184504268593]
グラデーション、クリッピングは、優れた高確率保証を導き出すアルゴリズムの鍵となる要素の1つである。
クリッピングは、合成および分散最適化の一般的な方法の収束を損なう可能性がある。
論文 参考訳(メタデータ) (2023-10-03T07:49:17Z) - Almost-sure convergence of iterates and multipliers in stochastic
sequential quadratic optimization [21.022322975077653]
等式制約付き連続最適化問題の解法が近年注目されている。
収束保証は、ゼロを測定するための勾配の期待値に制限されている。
また,SQPアルゴリズムにより生成した予備値,ラグランジュ測度,ステーション測度に対する新たなほぼ収束保証を証明した。
論文 参考訳(メタデータ) (2023-08-07T16:03:40Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - A Unified Convergence Theorem for Stochastic Optimization Methods [4.94128206910124]
一連の統一最適化手法に対する収束結果の導出に使用される基本的な統一収束定理を提供する。
直接応用として、一般的な設定下での収束結果をほぼ確実に回復する。
論文 参考訳(メタデータ) (2022-06-08T14:01:42Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。