論文の概要: Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient
- arxiv url: http://arxiv.org/abs/2306.09322v1
- Date: Thu, 15 Jun 2023 17:56:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 13:16:12.537628
- Title: Neural Relighting with Subsurface Scattering by Learning the Radiance
Transfer Gradient
- Title(参考訳): 放射光伝達勾配の学習による地下散乱による神経リライト
- Authors: Shizhan Zhu, Shunsuke Saito, Aljaz Bozic, Carlos Aliaga, Trevor
Darrell, Christop Lassner
- Abstract要約: 本稿では,ボリュームレンダリングによる放射移動場学習のための新しいフレームワークを提案する。
我々は、我々のコードと、地下散乱効果を持つ新しい光ステージのオブジェクトデータセットを公開します。
- 参考スコア(独自算出の注目度): 73.52585139592398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconstructing and relighting objects and scenes under varying lighting
conditions is challenging: existing neural rendering methods often cannot
handle the complex interactions between materials and light. Incorporating
pre-computed radiance transfer techniques enables global illumination, but
still struggles with materials with subsurface scattering effects. We propose a
novel framework for learning the radiance transfer field via volume rendering
and utilizing various appearance cues to refine geometry end-to-end. This
framework extends relighting and reconstruction capabilities to handle a wider
range of materials in a data-driven fashion. The resulting models produce
plausible rendering results in existing and novel conditions. We will release
our code and a novel light stage dataset of objects with subsurface scattering
effects publicly available.
- Abstract(参考訳): さまざまな照明条件下でオブジェクトやシーンを再構成し、リライトすることは難しい。既存のニューラルネットワークのレンダリング手法では、材料と光の複雑な相互作用を処理できないことが多い。
事前に計算された放射光伝達技術は、地球規模の照明を可能にするが、地表面散乱効果を持つ物質といまだに苦労している。
本稿では,音量レンダリングによる放射伝達場学習のための新しい枠組みを提案する。
このフレームワークは、リライトとリコンストラクション機能を拡張して、データ駆動方式で幅広い素材を扱う。
得られたモデルは、既存および新規の条件において、妥当なレンダリング結果を生成する。
我々は、我々のコードと、地下散乱効果を持つ新しい光ステージのオブジェクトデータセットを公開します。
関連論文リスト
- NeuS-PIR: Learning Relightable Neural Surface using Pre-Integrated Rendering [23.482941494283978]
本稿では,マルチビュー画像やビデオから可照性神経表面を復元するNeuS-PIR法を提案する。
NeRFや離散メッシュに基づく手法とは異なり,提案手法は暗黙のニューラルサーフェス表現を用いて高品質な幾何学を再構築する。
本手法は,現代のグラフィックスエンジンとシームレスに統合可能なリライトなどの高度なアプリケーションを実現する。
論文 参考訳(メタデータ) (2023-06-13T09:02:57Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
テンソルIRはテンソル分解とニューラルフィールドに基づく新しい逆レンダリング手法である。
TensoRFは、放射場モデリングのための最先端のアプローチである。
論文 参考訳(メタデータ) (2023-04-24T21:39:13Z) - NeAI: A Pre-convoluted Representation for Plug-and-Play Neural Ambient
Illumination [28.433403714053103]
ニューラル環境照明(NeAI)という枠組みを提案する。
NeAIは、物理的な方法で複雑な照明を扱うための照明モデルとしてNeRF(Neural Radiance Fields)を使用している。
実験は、以前の作品と比較して、ノベルビューレンダリングの優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-04-18T06:32:30Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
本稿では,大都市におけるシーン形状,空間変化材料,HDR照明を,任意の深さで描画したRGB画像の集合から共同で再構成できる新しい逆レンダリングフレームワークを提案する。
具体的には、第1の光線を考慮に入れ、第2の光線をモデリングするために、明示的なメッシュ(基礎となるニューラルネットワークから再構成)を用いて、キャストシャドウのような高次照明効果を発生させる。
論文 参考訳(メタデータ) (2023-04-06T17:51:54Z) - Neural Microfacet Fields for Inverse Rendering [54.15870869037466]
本研究では,シーンの画像から材料,幾何学,環境照明を復元する手法を提案する。
本手法では, 各試料を(潜在的に不透明な)表面として扱うことにより, ボリューム設定内にマイクロファセット反射率モデルを用いる。
論文 参考訳(メタデータ) (2023-03-31T05:38:13Z) - NeILF++: Inter-Reflectable Light Fields for Geometry and Material
Estimation [36.09503501647977]
我々は静的なシーンの照明を1つのニューラルインシデント光場(NeILF)と1つのニューラルラディアンス場(NeRF)として定式化する。
提案手法は, 幾何再構成の品質, 材料推定精度, 新規なビューレンダリングの忠実度の観点から, 最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-03-30T04:59:48Z) - NeILF: Neural Incident Light Field for Physically-based Material
Estimation [31.230609753253713]
本稿では,多視点画像と再構成幾何から物質と照明を推定するための微分可能なレンダリングフレームワークを提案する。
本フレームワークでは,シーン照明をニューラルインシデント光電場(NeILF)と表現し,多層パーセプトロンでモデル化した表面BRDFとして材料特性を示す。
論文 参考訳(メタデータ) (2022-03-14T15:23:04Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
そこで本研究では,単体画像から固有物体特性を推定する難題について,微分可能量を用いて検討する。
そこで本研究では、スペクトル化とレイトレーシングを組み合わせることで、これらの効果をサポートするハイブリッド微分可能なDIBR++を提案する。
より高度な物理ベースの微分可能値と比較すると、DIBR++はコンパクトで表現力のあるモデルであるため、高い性能を持つ。
論文 参考訳(メタデータ) (2021-10-30T01:59:39Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
照明条件が不明な物体の多視点像から物体の形状と空間的反射率を復元する問題に対処する。
これにより、任意の環境照明下でのオブジェクトの新たなビューのレンダリングや、オブジェクトの材料特性の編集が可能になる。
論文 参考訳(メタデータ) (2021-06-03T16:18:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。