論文の概要: Learnable Weight Initialization for Volumetric Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2306.09320v2
- Date: Mon, 19 Jun 2023 19:33:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 00:46:45.405057
- Title: Learnable Weight Initialization for Volumetric Medical Image
Segmentation
- Title(参考訳): 体積医用画像分割のための学習可能な重み初期化
- Authors: Shahina Kunhimon, Abdelrahman Shaker, Muzammal Naseer, Salman Khan,
Fahad Shahbaz Khan
- Abstract要約: 本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
- 参考スコア(独自算出の注目度): 54.1807206010136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid volumetric medical image segmentation models, combining the advantages
of local convolution and global attention, have recently received considerable
attention. While mainly focusing on architectural modifications, most existing
hybrid approaches still use conventional data-independent weight initialization
schemes which restrict their performance due to ignoring the inherent
volumetric nature of the medical data. To address this issue, we propose a
learnable weight initialization approach that utilizes the available medical
training data to effectively learn the contextual and structural cues via the
proposed self-supervised objectives. Our approach is easy to integrate into any
hybrid model and requires no external training data. Experiments on multi-organ
and lung cancer segmentation tasks demonstrate the effectiveness of our
approach, leading to state-of-the-art segmentation performance. Our source code
and models are available at: https://github.com/ShahinaKK/LWI-VMS.
- Abstract(参考訳): 局所畳み込みとグローバルな注意の利点を組み合わせたハイブリッド容積医用画像セグメンテーションモデルが最近注目されている。
主にアーキテクチャの変更に重点を置いているが、既存のほとんどのハイブリッドアプローチでは、医療データの本質的な容積性を無視して性能を制限する従来のデータ非依存の重み初期化スキームが使用されている。
そこで本研究では, 利用可能な医療訓練データを用いて, 提案する自己監督目標を用いて, 文脈的および構造的手がかりを効果的に学習する, 学習可能な重み初期化手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺癌セグメンテーションタスクの実験は、我々のアプローチの有効性を示し、最先端セグメンテーション性能をもたらす。
ソースコードとモデルは、https://github.com/shahinakk/lwi-vmsで利用可能です。
関連論文リスト
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
知識分解」は、特定の医療課題のパフォーマンス向上を目的としている。
我々はLow-Rank Knowledge Decomposition(LoRKD)という新しいフレームワークを提案する。
LoRKDは、低ランクのエキスパートモジュールと効率的な知識分離畳み込みを組み込むことで、グラデーションを異なるタスクから明確に分離する。
論文 参考訳(メタデータ) (2024-09-29T03:56:21Z) - Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors [0.0]
限られたアノテートデータのみを使用して事前訓練されたモデルを転送するには、少ないショットの学習アプローチが費用対効果がある。
我々は,肺CTスキャンにおいて,気道の効率を高めるために,データ駆動型スペーシフィケーションモジュールを訓練する。
次に、これらのスパース表現を標準教師付きセグメンテーションパイプラインに組み込み、DLモデルの性能を高めるための事前学習ステップとする。
論文 参考訳(メタデータ) (2024-07-05T13:46:11Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
本稿では,適応親和性に基づく蒸留とカーネルベースの蒸留をシームレスに組み合わせた,新しい関係に基づく知識フレームワークを提案する。
革新的アプローチを検証するために,我々は公開されている複数ソースのMRIデータについて実験を行った。
論文 参考訳(メタデータ) (2024-04-03T13:35:51Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
マスク画像モデル(MIM)は,マスク画像から元の情報を復元する簡便さと有効性から広く利用されている。
本稿では、強化学習(RL)を利用して最適な画像マスキング比とマスキング戦略を自動検索する決定に基づくMIMを提案する。
本手法は,ニューロン分節の課題において,代替自己監督法に対して有意な優位性を有する。
論文 参考訳(メタデータ) (2023-10-06T10:40:46Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - MultiTalent: A Multi-Dataset Approach to Medical Image Segmentation [1.146419670457951]
現在のプラクティスでは、モデルトレーニングと教師付き事前トレーニングを、1つまたはいくつかの類似したデータセットに制限している。
我々は多種多様なクラス定義を持つ複数のCTデータセットを活用する手法であるMultiTalentを提案する。
論文 参考訳(メタデータ) (2023-03-25T11:37:16Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Few-shot segmentation of medical images based on meta-learning with
implicit gradients [0.48861336570452174]
医用画像セグメンテーションのための数ショット設定において,最適化に基づく暗黙的メタ学習iMAMLアルゴリズムを活用することを提案する。
このアプローチでは、さまざまなトレーニングサンプルから学んだ重みを活用でき、新しい未知のデータセットにデプロイすることができます。
論文 参考訳(メタデータ) (2021-06-06T19:52:06Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。