Modular Simulation Environment Towards OTN AI-based Solutions
- URL: http://arxiv.org/abs/2306.11135v1
- Date: Mon, 19 Jun 2023 19:38:31 GMT
- Title: Modular Simulation Environment Towards OTN AI-based Solutions
- Authors: Sam Aleyadeh, Abbas Javadtalab, Abdallah Shami
- Abstract summary: Main hurdle when developing Next Generation Network is the availability of large datasets.
This need led researchers to look for viable simulation environments to generate the necessary volume.
We propose a modular solution to adapt to the user's available resources.
- Score: 4.109840601429085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The current trend for highly dynamic and virtualized networking
infrastructure made automated networking a critical requirement. Multiple
solutions have been proposed to address this, including the most sought-after
machine learning ML-based solutions. However, the main hurdle when developing
Next Generation Network is the availability of large datasets, especially in 5G
and beyond and Optical Transport Networking (OTN) traffic. This need led
researchers to look for viable simulation environments to generate the
necessary volume with highly configurable real-life scenarios, which can be
costly in setup and require subscription-based products and even the purchase
of dedicated hardware, depending on the supplier. We aim to address this issue
by generating high-volume and fidelity datasets by proposing a modular solution
to adapt to the user's available resources. These datasets can be used to
develop better-aforementioned ML solutions resulting in higher accuracy and
adaptation to real-life networking traffic.
Related papers
- AI/ML Life Cycle Management for Interoperable AI Native RAN [50.61227317567369]
Artificial intelligence (AI) and machine learning (ML) models are rapidly permeating the 5G Radio Access Network (RAN)<n>These developments lay the foundation for AI-native transceivers as a key enabler for 6G.
arXiv Detail & Related papers (2025-07-24T16:04:59Z) - The Kubernetes Network Driver Model: A Composable Architecture for High-Performance Networking [0.0]
Traditional networking struggles to meet the escalating demands of AI/ML and evolving Telco infrastructure.<n>This paper introduces Network Drivers (KNDs), a transformative, modular, and declarative architecture designed to overcome current imperative provisioning and API limitations.
arXiv Detail & Related papers (2025-06-30T08:45:54Z) - INSIGHT: A Survey of In-Network Systems for Intelligent, High-Efficiency AI and Topology Optimization [43.37351326629751]
In-network AI is a transformative approach to addressing the escalating demands of Artificial Intelligence (AI) on network infrastructure.<n>This paper provides a comprehensive analysis of optimizing in-network computation for AI.<n>It examines methodologies for mapping AI models onto resource-constrained network devices, addressing challenges like limited memory and computational capabilities.
arXiv Detail & Related papers (2025-05-30T06:47:55Z) - Open-Source LLM-Driven Federated Transformer for Predictive IoV Management [1.8024397171920885]
Federated Prompt-d Traffic Transformer (FPoTT) is a novel framework that leverages open-source Large Language Models for predictive IoV management.
FPoTT introduces a dynamic prompt optimization mechanism that iteratively refines textual prompts to enhance trajectory prediction.
The architecture employs a dual-layer federated learning paradigm, combining lightweight edge models for real-time inference with cloud-based LLMs to retain global intelligence.
arXiv Detail & Related papers (2025-05-01T16:54:21Z) - Smooth Handovers via Smoothed Online Learning [48.953313950521746]
We first analyze an extensive dataset from a commercial mobile network operator (MNO) in Europe with more than 40M users, to understand and reveal important features and performance impacts on HOs.
Our findings highlight a correlation between HO failures/delays, and the characteristics of radio cells and end-user devices.
We propose a realistic system model for smooth and accurate HOs that extends existing approaches by incorporating device and cell features on HO optimization.
arXiv Detail & Related papers (2025-01-14T13:16:33Z) - AutoRNet: Automatically Optimizing Heuristics for Robust Network Design via Large Language Models [3.833708891059351]
AutoRNet is a framework that integrates large language models with evolutionary algorithms to generate robust networks.
We introduce an adaptive fitness function to balance convergence and diversity while maintaining degree distributions.
AutoRNet is evaluated on sparse and dense scale-free networks.
arXiv Detail & Related papers (2024-10-23T08:18:38Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
We propose a customized wireless network intent (WNI-G) model to address different state variations of wireless communication networks.
Extensive simulation achieves greater stability in spectral efficiency and variations of traditional DRL models in dynamic communication systems.
arXiv Detail & Related papers (2024-10-18T14:04:38Z) - A General-Purpose Device for Interaction with LLMs [3.052172365469752]
This paper investigates integrating large language models (LLMs) with advanced hardware.
We focus on developing a general-purpose device designed for enhanced interaction with LLMs.
arXiv Detail & Related papers (2024-08-02T23:43:29Z) - INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
This paper introduces INTELLECT, a novel solution that integrates feature selection, model pruning, and fine-tuning techniques into a cohesive pipeline for the dynamic adaptation of pre-trained ML models and configurations for IDSs.
We demonstrate the advantages of incorporating knowledge distillation techniques while fine-tuning, enabling the ML model to consistently adapt to local network patterns while preserving historical knowledge.
arXiv Detail & Related papers (2024-07-17T22:34:29Z) - Personalized Resource Allocation in Wireless Networks: An AI-Enabled and
Big Data-Driven Multi-Objective Optimization [22.77447144331876]
The use of Artificial Intelligence (AI) is envisioned for wireless network design and optimization.
One of the main future applications of AI is enabling user-level personalization for numerous use cases.
The personalization technology advocated in this article is supported by an intelligent big data-driven layer designed to micro-manage the scarce network resources.
arXiv Detail & Related papers (2023-07-08T00:26:36Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
We propose a continual adaptation paradigm for deep stereo networks designed to deal with challenging and ever-changing environments.
In our paradigm, the learning signals needed to continuously adapt models online can be sourced from self-supervision via right-to-left image warping or from traditional stereo algorithms.
Our network architecture and adaptation algorithms realize the first real-time self-adaptive deep stereo system.
arXiv Detail & Related papers (2020-07-10T08:15:58Z) - Multi-Agent Reinforcement Learning for Adaptive User Association in
Dynamic mmWave Networks [17.295158818748188]
We propose a scalable and flexible algorithm for user association based on multi-agent reinforcement learning.
Users act as independent agents that, based on their local observations only, learn to autonomously coordinate their actions in order to optimize the network sum-rate.
Simulation results show that the proposed algorithm is able to adapt to (fast) changes of radio environment, thus providing large sum-rate gain in comparison to state-of-the-art solutions.
arXiv Detail & Related papers (2020-06-16T10:51:27Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.