論文の概要: Spiking Neural Network for Ultra-low-latency and High-accurate Object
Detection
- arxiv url: http://arxiv.org/abs/2306.12010v1
- Date: Wed, 21 Jun 2023 04:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 14:59:02.569699
- Title: Spiking Neural Network for Ultra-low-latency and High-accurate Object
Detection
- Title(参考訳): 超低遅延・高精度物体検出のためのスパイクニューラルネットワーク
- Authors: Jinye Qu, Zeyu Gao, Tielin Zhang, Yanfeng Lu, Huajin Tang, Hong Qiao
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率と脳にインスパイアされたイベント駆動特性に対する幅広い関心を集めている。
Spiking-YOLOのような最近の手法では、SNNをより困難なオブジェクト検出タスクに拡張している。
レイテンシが高く、検出精度が低いため、レイテンシに敏感なモバイルプラットフォームへのデプロイが困難になることが多い。
- 参考スコア(独自算出の注目度): 18.037802439500858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) have garnered widespread interest for their
energy efficiency and brain-inspired event-driven properties. While recent
methods like Spiking-YOLO have expanded the SNNs to more challenging object
detection tasks, they often suffer from high latency and low detection
accuracy, making them difficult to deploy on latency sensitive mobile
platforms. Furthermore, the conversion method from Artificial Neural Networks
(ANNs) to SNNs is hard to maintain the complete structure of the ANNs,
resulting in poor feature representation and high conversion errors. To address
these challenges, we propose two methods: timesteps compression and
spike-time-dependent integrated (STDI) coding. The former reduces the timesteps
required in ANN-SNN conversion by compressing information, while the latter
sets a time-varying threshold to expand the information holding capacity. We
also present a SNN-based ultra-low latency and high accurate object detection
model (SUHD) that achieves state-of-the-art performance on nontrivial datasets
like PASCAL VOC and MS COCO, with about remarkable 750x fewer timesteps and 30%
mean average precision (mAP) improvement, compared to the Spiking-YOLO on MS
COCO datasets. To the best of our knowledge, SUHD is the deepest spike-based
object detection model to date that achieves ultra low timesteps to complete
the lossless conversion.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率と脳にインスパイアされたイベント駆動特性に対する幅広い関心を集めている。
spiking-yoloのような最近の手法では、snsをより難しいオブジェクト検出タスクに拡張しているが、しばしば高いレイテンシと低い検出精度に苦しめられ、レイテンシに敏感なモバイルプラットフォームへのデプロイが困難になっている。
さらに、ニューラルネットワーク(ANN)からSNNへの変換手法は、ANNの完全な構造を維持することは困難であり、特徴表現の貧弱さと高い変換誤差をもたらす。
これらの課題に対処するために、時間ステップ圧縮とスパイク時間依存統合(STDI)符号化という2つの手法を提案する。
前者は情報圧縮によりANN-SNN変換に必要な時間ステップを削減し、後者は情報保持能力を拡張するための時間変化閾値を設定する。
また、PASCAL VOCやMS COCOのような非自明なデータセットに対して、SNNベースの超低レイテンシと高精度オブジェクト検出モデル(SUHD)を、MS COCOデータセットのSpking-YOLOと比較して、約750倍の時間ステップと平均平均精度(mAP)の改善を達成し、最先端のパフォーマンスを実現する。
我々の知る限り、SUHDは今までで最も深いスパイクに基づくオブジェクト検出モデルであり、損失のない変換を完了するための超低タイムステップを実現する。
関連論文リスト
- Towards Low-latency Event-based Visual Recognition with Hybrid Step-wise Distillation Spiking Neural Networks [50.32980443749865]
スパイキングニューラルネットワーク(SNN)は、低消費電力と高い生物性のために大きな注目を集めている。
現在のSNNは、ニューロモルフィックデータセットの正確性とレイテンシのバランスをとるのに苦労している。
ニューロモルフィックデータセットに適したステップワイド蒸留法(HSD)を提案する。
論文 参考訳(メタデータ) (2024-09-19T06:52:34Z) - Highly Efficient SNNs for High-speed Object Detection [7.3074002563489024]
実験結果から, 物体検出タスクにおいて, 1.5MBのパラメータしか持たないGPU上で, 効率的なSNNが118倍の高速化を実現できることが示唆された。
FPGAプラットフォーム上でのSNNをさらに検証し,800以上のFPSオブジェクトを極めて低レイテンシで検出できるモデルを提案する。
論文 参考訳(メタデータ) (2023-09-27T10:31:12Z) - Low Latency of object detection for spikng neural network [3.404826786562694]
スパイキングニューラルネットワークは、バイナリスパイクの性質のため、エッジAIアプリケーションに適している。
本稿では,オブジェクト検出に特化して,高精度で低遅延なSNNを生成することに焦点を当てる。
論文 参考訳(メタデータ) (2023-09-27T10:26:19Z) - Enabling energy-Efficient object detection with surrogate gradient
descent in spiking neural networks [0.40054215937601956]
スパイキングニューラルネットワーク(英: Spiking Neural Networks、SNN)は、イベント駆動処理と処理時情報の両方において、生物学的にもっとも有効なニューラルネットワークモデルである。
本研究では,オブジェクト検出タスクにおける深部SNNのトレーニングを容易にするために,回帰問題を解くCurrent Mean Decoding(CMD)手法を提案する。
勾配サロゲートとCMDに基づいて,物体検出のためのSNN-YOLOv3モデルを提案する。
論文 参考訳(メタデータ) (2023-09-07T15:48:00Z) - Deep Directly-Trained Spiking Neural Networks for Object Detection [20.594942840081757]
EMS-YOLOは、オブジェクト検出のための、直接訓練されたSNNフレームワークである。
低消費電力で直接学習したSNNの深さを効果的に拡張できるフルスパイク残差ブロック EMS-ResNet を設計する。
このモデルでは、同じアーキテクチャでANNに匹敵する性能を達成できる一方で、5.83倍のエネルギーを消費できることが示されている。
論文 参考訳(メタデータ) (2023-07-21T08:10:26Z) - Adaptive-SpikeNet: Event-based Optical Flow Estimation using Spiking
Neural Networks with Learnable Neuronal Dynamics [6.309365332210523]
ニューラルインスパイアされたイベント駆動処理でニューラルネットワーク(SNN)をスパイクすることで、非同期データを効率的に処理できる。
スパイク消滅問題を緩和するために,学習可能な神経力学を用いた適応型完全スパイキングフレームワークを提案する。
実験の結果,平均終端誤差(AEE)は最先端のANNと比較して平均13%減少した。
論文 参考訳(メタデータ) (2022-09-21T21:17:56Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。