Localised Dynamics in the Floquet Quantum East Model
- URL: http://arxiv.org/abs/2306.12467v2
- Date: Sat, 24 Feb 2024 11:53:54 GMT
- Title: Localised Dynamics in the Floquet Quantum East Model
- Authors: Bruno Bertini, Pavel Kos, and Tomaz Prosen
- Abstract summary: We study the discrete-time version of the Quantum East model, an interacting quantum spin chain inspired by simple kinetically constrained models of classical glasses.
Previous work has established that its continuous-time counterpart displays a disorder-free localisation transition signalled by the appearance of an exponentially large family of non-thermal, localised eigenstates.
Our findings imply that the transition is currently observable in state-of-the-art platforms for digital quantum simulation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce and study the discrete-time version of the Quantum East model,
an interacting quantum spin chain inspired by simple kinetically constrained
models of classical glasses. Previous work has established that its
continuous-time counterpart displays a disorder-free localisation transition
signalled by the appearance of an exponentially large (in the volume) family of
non-thermal, localised eigenstates. Here we combine analytical and numerical
approaches to show that: i) The transition persists for discrete times, in
fact, it is present for any finite value of the time step apart from a zero
measure set; ii) It is directly detected by following the non-equilibrium
dynamics of the fully polarised state. Our findings imply that the transition
is currently observable in state-of-the-art platforms for digital quantum
simulation.
Related papers
- Dynamical Quantum Phase Transition and Thermal Equilibrium in the Lattice Thirring Model [2.1677452722087884]
We simulate the evolution of the lattice Thirring model quenched out of equilibrium in both the critical and massive phases.
We identify a threshold in the energy density of the initial state, necessary for a dynamical quantum phase transition to be present.
arXiv Detail & Related papers (2024-07-16T00:51:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Scale-invariant critical dynamics at eigenstate transitions [0.0]
We study features of scale-invariant dynamics of survival probability and SFF at criticality.
We show that, in contrast to the quantum chaotic regime, the quantum dynamics at criticality do not only exhibit scale invariance at late times.
arXiv Detail & Related papers (2023-09-27T20:35:58Z) - Timescales of quantum and classical chaotic spin models evolving toward equilibrium [0.0]
We investigate quench dynamics in a one-dimensional spin model, comparing both quantum and classical descriptions.
Numerical simulations, supported by semi-analytical analysis, reveal that the relaxation of single-particle energies (global quantity) and on-site magnetization (local observable) occurs on a timescale independent of the system size $L$.
arXiv Detail & Related papers (2023-07-11T18:00:04Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Quantum trajectories of dissipative time-crystals [0.0]
We show that the photon count signal as well as the homodyne current allow to identify and characterize critical behavior at the time-crystal phase transition.
The average time between these fluctuation events shows a power-law scaling with system size.
We furthermore show that the time-integrated homodyne current can serve as a useful dynamical order parameter.
arXiv Detail & Related papers (2022-12-13T10:20:00Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Classical, semiclassical and quantum signatures of quantum phase
transitions in a (pseudo) relativistic many-body system [0.0]
We identify a (pseudo) relativistic spin-dependent analogue of the celebrated quantum phase transition driven by the formation of a bright soliton in bosonic gases.
We numerically investigate the approach from its finite-size precursors to the sharp quantum phase transition in the thermodynamic limit.
arXiv Detail & Related papers (2020-07-09T09:08:17Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.