Explainable quantum regression algorithm with encoded data structure
- URL: http://arxiv.org/abs/2307.03334v5
- Date: Thu, 26 Jun 2025 03:12:31 GMT
- Title: Explainable quantum regression algorithm with encoded data structure
- Authors: C. -C. Joseph Wang, F. Perkkola, I. Salmenperä, A. Meijer-van de Griend, J. K. Nurminen, R. S. Bennink,
- Abstract summary: In this paper, we construct the first interpretable quantum regression algorithm.<n>The encoded data structure reduces the time complexity of computing the regression map.<n>We envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hybrid variational quantum algorithms (VQAs) are promising for solving practical problems such as combinatorial optimization, quantum chemistry simulation, quantum machine learning, and quantum error correction on noisy quantum computers. However, with typical random ansatz or quantum alternating operator ansatz, derived variational quantum algorithms become a black box that cannot be trusted for model interpretation, not to mention deploying as applications in informing critical decisions: the results of these variational parameters are just rotational angles for the quantum gates and have nothing to do with interpretable values that a model can provide directly. In this paper, we construct the first interpretable quantum regression algorithm, in which the quantum state exactly encodes the classical data table and the variational parameters correspond directly to the regression coefficients, which are real numbers by construction, providing a high degree of model interpretability and minimal cost to optimize due to the right expressiveness. We also take advantage of the encoded data structure to reduce the time complexity of computing the regression map. To shorten the circuit depth for nonlinear regression, our algorithm can be extended by building nonlinear features by classical preprocessing as the independent encoded column vectors. Even though the realization of compressed encoding in superconducting qubits has been achieved by the less noisy compressed encoding recently by the authors, we envision potential quantum utilities with multi-qubit gates implemented in neutral cold atoms and ions.
Related papers
- Quantum-Efficient Convolution through Sparse Matrix Encoding and Low-Depth Inner Product Circuits [0.0]
We present a resource-efficient quantum algorithm that reformulates the convolution product as a structured matrix multiplication.<n>We construct a quantum framework wherein sparse input patches are prepared using optimized key-value QRAM state encoding.<n>Our architecture supports batched convolution across multiple filters using a generalized SWAP circuit.
arXiv Detail & Related papers (2025-07-25T20:08:12Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Predicting RNA Secondary Structure on Universal Quantum Computer [2.277461161767121]
It is the first step for understanding how RNA structure folds from base sequences that to know how its secondary structure is formed.
Traditional energy-based algorithms are short of precision, particularly for non-nested sequences.
Gate model algorithms for universal quantum computing are not available.
arXiv Detail & Related papers (2023-05-16T15:57:38Z) - Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance [0.0]
Classical Monte Carlo algorithms can theoretically be sped up on a quantum computer by employing amplitude estimation (AE)
We develop a straightforward approach based on pretraining parameterized quantum circuits.
We show how they can be transformed into their conditional variant, making them usable as a subroutine in an AE algorithm.
arXiv Detail & Related papers (2023-04-18T07:56:57Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Quantum Regularized Least Squares [0.0]
In most real-world scenarios, linear regression problems are often ill-posed or the underlying model suffers from overfitting.
This is often dealt with by adding extra constraints, known as regularization.
We use the frameworks of block-encoding and quantum singular value transformation to design the first quantum algorithms for quantum least squares.
arXiv Detail & Related papers (2022-06-27T09:43:39Z) - Quantum Extremal Learning [0.8937790536664091]
We propose a quantum algorithm for extremal learning', which is the process of finding the input to a hidden function that extremizes the function output.
The algorithm, called quantum extremal learning (QEL), consists of a parametric quantum circuit that is variationally trained to model data input-output relationships.
arXiv Detail & Related papers (2022-05-05T17:37:26Z) - Quantum Neuron with Separable-State Encoding [0.0]
It is not yet possible to test advanced quantum neuron models on a large scale in currently available quantum processors.
We propose a quantum perceptron (QP) model that uses a reduced number of multi-qubit gates.
We demonstrate the performance of the proposed model by implementing a few qubits version of the QP in a simulated quantum computer.
arXiv Detail & Related papers (2022-02-16T19:26:23Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quantum Ensemble for Classification [2.064612766965483]
A powerful way to improve performance in machine learning is to construct an ensemble that combines the predictions of multiple models.
We propose a new quantum algorithm that exploits quantum superposition, entanglement and interference to build an ensemble of classification models.
arXiv Detail & Related papers (2020-07-02T11:26:54Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.