論文の概要: Random-Set Neural Networks (RS-NN)
- arxiv url: http://arxiv.org/abs/2307.05772v5
- Date: Fri, 14 Feb 2025 20:42:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:06:22.992248
- Title: Random-Set Neural Networks (RS-NN)
- Title(参考訳): ランダムセットニューラルネットワーク(RS-NN)
- Authors: Shireen Kudukkil Manchingal, Muhammad Mubashar, Kaizheng Wang, Keivan Shariatmadar, Fabio Cuzzolin,
- Abstract要約: 本稿では,新しいランダムセットニューラルネットワーク(RS-NN)による分類手法を提案する。
RS-NNは、不十分に代表される訓練セットによって引き起こされる「緊急」不確実性を符号化する。
提案手法は,精度,不確実性推定,アウト・オブ・ディストリビューション(OoD)検出において,最先端のベイズ法およびアンサンブル法より優れる。
- 参考スコア(独自算出の注目度): 4.549947259731147
- License:
- Abstract: Machine learning is increasingly deployed in safety-critical domains where erroneous predictions may lead to potentially catastrophic consequences, highlighting the need for learning systems to be aware of how confident they are in their own predictions: in other words, 'to know when they do not know'. In this paper, we propose a novel Random-Set Neural Network (RS-NN) approach to classification which predicts belief functions (rather than classical probability vectors) over the class list using the mathematics of random sets, i.e., distributions over the collection of sets of classes. RS-NN encodes the 'epistemic' uncertainty induced by training sets that are insufficiently representative or limited in size via the size of the convex set of probability vectors associated with a predicted belief function. Our approach outperforms state-of-the-art Bayesian and Ensemble methods in terms of accuracy, uncertainty estimation and out-of-distribution (OoD) detection on multiple benchmarks (CIFAR-10 vs SVHN/Intel-Image, MNIST vs FMNIST/KMNIST, ImageNet vs ImageNet-O). RS-NN also scales up effectively to large-scale architectures (e.g. WideResNet-28-10, VGG16, Inception V3, EfficientNetB2 and ViT-Base-16), exhibits remarkable robustness to adversarial attacks and can provide statistical guarantees in a conformal learning setting.
- Abstract(参考訳): 機械学習は、誤った予測が破滅的な結果をもたらす可能性がある、安全クリティカルな領域にますます展開されている。
本稿では,クラス集合の集合上の分布というランダム集合の数学を用いて,クラスリスト上の信念関数(古典的確率ベクトルではなく)を予測できる新しいランダムセットニューラルネットワーク(RS-NN)を提案する。
RS-NNは、予測された信念関数に関連する確率ベクトルの凸集合のサイズによって、十分に代表的であるか制限されている訓練セットによって引き起こされる「緊急」不確実性を符号化する。
提案手法は,複数のベンチマーク(CIFAR-10対SVHN/Intel-Image,MNIST vs FMNIST/KMNIST, ImageNet vs ImageNet-O)において,精度,不確実性評価,アウト・オブ・ディストリビューション(OoD)の検出において,最先端ベイズ法およびアンサンブル法より優れている。
RS-NNは大規模アーキテクチャ(例えば WideResNet-28-10, VGG16, Inception V3, EfficientNetB2, ViT-Base-16)にも効果的にスケールアップし、敵攻撃に対する顕著な堅牢性を示し、共形学習環境で統計的保証を提供する。
関連論文リスト
- CreINNs: Credal-Set Interval Neural Networks for Uncertainty Estimation
in Classification Tasks [5.19656787424626]
不確実性推定は、ニューラルネットワークの信頼性を向上させるためにますます魅力的なものになっている。
分類タスク用に設計された新しいクレーダセットインターバルニューラルネットワーク(CreINN)を提案する。
論文 参考訳(メタデータ) (2024-01-10T10:04:49Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - UPNet: Uncertainty-based Picking Deep Learning Network for Robust First Break Picking [6.380128763476294]
第一破砕(FB)ピッキングは地下速度モデルの決定において重要な側面である。
この処理を高速化するために、ディープニューラルネットワーク(DNN)が提案されている。
本稿では、FB選択タスクに不確実性定量化を導入し、UPNetと呼ばれる新しい不確実性に基づくディープラーニングネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-23T08:13:09Z) - $p$-DkNN: Out-of-Distribution Detection Through Statistical Testing of
Deep Representations [32.99800144249333]
我々は、訓練された深層ニューラルネットワークを使用し、その中間の隠蔽表現の類似構造を分析する新しい推論手順である$p$-DkNNを紹介した。
我々は、$p$-DkNNでアダプティブアタッカーが、最悪のOOD入力の形式である敵の例を作成して、入力に意味のある変更を導入する。
論文 参考訳(メタデータ) (2022-07-25T21:42:08Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification [0.0]
モデルの予測の不確実性を定量化することは、AIシステムの安全性を高めるために重要である。
これは、自動運転車の制御、医療画像分析、財務推定、法的分野など、エラーのコストが高いアプリケーションにとって極めて重要である。
本稿では,画像分類の課題に対して,Deep Neural Networksにおいて既知の3種類の不確実性を捕捉し,定量化するための完全なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-17T15:36:42Z) - Unifying supervised learning and VAEs -- coverage, systematics and
goodness-of-fit in normalizing-flow based neural network models for
astro-particle reconstructions [0.0]
統計的不確実性、包括性、体系的不確実性、あるいは適度な尺度はしばしば計算されない。
データとラベルの共分散のKL分割の目的は、教師付き学習と変分オートエンコーダの統合を可能にすることを示す。
本稿では,特定の「基本順序」輪郭の数値積分を伴わずにカバレッジ確率を計算する方法について論じる。
論文 参考訳(メタデータ) (2020-08-13T11:28:57Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。