論文の概要: Covariate shift in nonparametric regression with Markovian design
- arxiv url: http://arxiv.org/abs/2307.08517v1
- Date: Mon, 17 Jul 2023 14:24:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-18 12:57:17.909490
- Title: Covariate shift in nonparametric regression with Markovian design
- Title(参考訳): マルコフ設計による非パラメトリック回帰の共変量シフト
- Authors: Lukas Trottner
- Abstract要約: ナダラヤ・ワトソン核推定器の滑らかさリスクに対する収束速度は、ソースとターゲットマルコフ連鎖に関連する不変分布の類似性によって決定されることを示す。
我々は、Kpotufe と Martinet からの分布指数の概念を、一様エルゴードなマルコフ鎖の核移動指数に拡張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Covariate shift in regression problems and the associated distribution
mismatch between training and test data is a commonly encountered phenomenon in
machine learning. In this paper, we extend recent results on nonparametric
convergence rates for i.i.d. data to Markovian dependence structures. We
demonstrate that under H\"older smoothness assumptions on the regression
function, convergence rates for the generalization risk of a Nadaraya-Watson
kernel estimator are determined by the similarity between the invariant
distributions associated to source and target Markov chains. The similarity is
explicitly captured in terms of a bandwidth-dependent similarity measure
recently introduced in Pathak, Ma and Wainwright [ICML, 2022]. Precise
convergence rates are derived for the particular cases of finite Markov chains
and spectral gap Markov chains for which the similarity measure between their
invariant distributions grows polynomially with decreasing bandwidth. For the
latter, we extend the notion of a distribution transfer exponent from Kpotufe
and Martinet [Ann. Stat., 49(6), 2021] to kernel transfer exponents of
uniformly ergodic Markov chains in order to generate a rich class of Markov
kernel pairs for which convergence guarantees for the covariate shift problem
can be formulated.
- Abstract(参考訳): 回帰問題における共変量シフトと、トレーニングとテストデータの分布ミスマッチは、機械学習でよく見られる現象である。
本稿では,マルコフ依存構造への非パラメトリック収束率に関する最近の結果を拡張する。
回帰関数に対するh\"older smoothnessの仮定の下では、nadaraya-watson核推定器の一般化リスクの収束率は、ソースとターゲットマルコフ連鎖に関連する不変分布の類似性によって決定される。
この類似性は、Pathak, Ma and Wainwright [ICML, 2022]で最近導入された帯域幅依存の類似性尺度で明確に捉えられている。
正確な収束速度は、有限マルコフ連鎖とスペクトルギャップマルコフ連鎖の特定の場合において導出され、その不変分布間の類似度は帯域幅の減少とともに多項式的に増加する。
後者については、kpotufe と martinet [ann. stat., 49(6), 2021] から一様エルゴードマルコフ鎖の核伝達指数へ分布伝達指数の概念を拡張して、共変量シフト問題の収束保証を定式化するマルコフ核対のリッチクラスを生成する。
関連論文リスト
- Uncertainty quantification for Markov chains with application to temporal difference learning [63.49764856675643]
マルコフ連鎖のベクトル値および行列値関数に対する新しい高次元濃度不等式とベリー・エッシー境界を開発する。
我々は、強化学習における政策評価に広く用いられているTD学習アルゴリズムを解析する。
論文 参考訳(メタデータ) (2025-02-19T15:33:55Z) - Ai-Sampler: Adversarial Learning of Markov kernels with involutive maps [28.229819253644862]
本稿では,マルコフ連鎖の遷移核のパラメータ化と訓練を行い,効率的なサンプリングと良好な混合を実現する方法を提案する。
この訓練方法は、チェーンの定常分布とデータの経験分布との総変動距離を最小化する。
論文 参考訳(メタデータ) (2024-06-04T17:00:14Z) - Variance-Reducing Couplings for Random Features [57.73648780299374]
ランダム機能(RF)は、機械学習においてカーネルメソッドをスケールアップする一般的なテクニックである。
ユークリッド空間と離散入力空間の両方で定義されるRFを改善するための結合を求める。
パラダイムとしての分散還元の利点と限界について、驚くほどの結論に達した。
論文 参考訳(メタデータ) (2024-05-26T12:25:09Z) - Ito Diffusion Approximation of Universal Ito Chains for Sampling, Optimization and Boosting [64.0722630873758]
我々は、ある微分方程式のオイラー・マルヤマ離散化のように見える、より一般で幅広いマルコフ連鎖、伊藤鎖を考える。
伊藤鎖の法則と微分方程式の間の$W_2$-距離の有界性を証明する。
論文 参考訳(メタデータ) (2023-10-09T18:38:56Z) - Self-Repellent Random Walks on General Graphs -- Achieving Minimal
Sampling Variance via Nonlinear Markov Chains [11.3631620309434]
ランダムウォーカーは、サンプリングと近傍探索により、ネットワークトポロジ上のターゲット量を近似するように設計されている。
目的とする確率分布に対応するマルコフ連鎖が与えられた場合、過去に頻繁に訪れたノードに遷移する可能性が低く、滅多に訪れないノードに遷移する可能性が低い自己反発ランダムウォーク(SRRW)を設計する。
正の実アルファでパラメータ化されたSRRWのクラスに対して、プロセスの経験的分布がターゲットにほぼ確実に収束することを証明する。
論文 参考訳(メタデータ) (2023-05-08T23:59:09Z) - Rosenthal-type inequalities for linear statistics of Markov chains [20.606986885851573]
幾何学的エルゴード的マルコフ鎖の加法関数に対する新しい偏差境界を確立する。
我々は、対応する鎖の混合時間に対する境界の依存に特に注意を払う。
論文 参考訳(メタデータ) (2023-03-10T10:24:46Z) - Wrapped Distributions on homogeneous Riemannian manifolds [58.720142291102135]
パラメータ、対称性、モダリティなどの分布の性質の制御は、フレキシブルな分布の族を生み出す。
変動型オートエンコーダと潜在空間ネットワークモデル内で提案した分布を利用して,我々のアプローチを実証的に検証する。
論文 参考訳(メタデータ) (2022-04-20T21:25:21Z) - A Unified Joint Maximum Mean Discrepancy for Domain Adaptation [73.44809425486767]
本論文は,最適化が容易なjmmdの統一形式を理論的に導出する。
統合JMMDから、JMMDは分類に有利な特徴ラベル依存を低下させることを示す。
本稿では,その依存を促進する新たなmmd行列を提案し,ラベル分布シフトにロバストな新しいラベルカーネルを考案する。
論文 参考訳(メタデータ) (2021-01-25T09:46:14Z) - Concentration inequality for U-statistics of order two for uniformly
ergodic Markov chains [0.0]
我々は、一様エルゴード型マルコフ鎖に対する位数2のU-統計量に対する濃度不等式を証明した。
独立確率変数と正準核のU統計値の集中結果を示したArconesとGin'eの収束率を復元できることが示される。
論文 参考訳(メタデータ) (2020-11-20T15:14:34Z) - MCMC-Interactive Variational Inference [56.58416764959414]
本稿では, MCMC-interactive variational inference (MIVI) を提案し, 後部を時間制約で推定する。
MIVIは変分推論とMCMCの相補的特性を利用して相互改善を促進する。
実験により、MIVIは後部を正確に近似するだけでなく、勾配MCMCとギブスサンプリング遷移の設計を容易にすることが示された。
論文 参考訳(メタデータ) (2020-10-02T17:43:20Z) - Convergence of Recursive Stochastic Algorithms using Wasserstein
Divergence [4.688616907736838]
本研究では, 定常段差RSAの集団の収束が, この枠組みを用いて理解可能であることを示す。
本研究では, 定常段差RSAの集団の収束が, この枠組みを用いて理解可能であることを示す。
論文 参考訳(メタデータ) (2020-03-25T13:45:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。