SMOTEC: An Edge Computing Testbed for Adaptive Smart Mobility
Experimentation
- URL: http://arxiv.org/abs/2307.11181v1
- Date: Thu, 20 Jul 2023 18:49:45 GMT
- Title: SMOTEC: An Edge Computing Testbed for Adaptive Smart Mobility
Experimentation
- Authors: Zeinab Nezami, Evangelos Pournaras, Amir Borzouie, Jie Xu
- Abstract summary: This paper introduces SMOTEC, a novel open-source testbed for adaptive smart mobility experimentation with edge computing.
SMOTEC provides for the first time a modular end-to-end instrumentation for prototyping and optimizing placement of intelligence services on edge devices such as augmented reality and real-time traffic monitoring.
A proof-of-concept of self-optimized service placements for traffic monitoring from Munich demonstrates in practice the applicability and cost-effectiveness of SMOTEC.
- Score: 4.202384258749882
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart mobility becomes paramount for meeting net-zero targets. However,
autonomous, self-driving and electric vehicles require more than ever before an
efficient, resilient and trustworthy computational offloading backbone that
expands throughout the edge-to-cloud continuum. Utilizing on-demand
heterogeneous computational resources for smart mobility is challenging and
often cost-ineffective. This paper introduces SMOTEC, a novel open-source
testbed for adaptive smart mobility experimentation with edge computing. SMOTEC
provides for the first time a modular end-to-end instrumentation for
prototyping and optimizing placement of intelligence services on edge devices
such as augmented reality and real-time traffic monitoring. SMOTEC supports a
plug-and-play Docker container integration of the SUMO simulator for urban
mobility, Raspberry Pi edge devices communicating via ZeroMQ and EPOS for an
AI-based decentralized load balancing across edge-to-cloud. All components are
orchestrated by the K3s lightweight Kubernetes. A proof-of-concept of
self-optimized service placements for traffic monitoring from Munich
demonstrates in practice the applicability and cost-effectiveness of SMOTEC.
Related papers
- Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
We investigate the application of energy-efficient brain-inspired machine learning models for on-board radio resource management.
For relevant workloads, spiking neural networks (SNNs) implemented on Loihi 2 yield higher accuracy, while reducing power consumption by more than 100$times$ as compared to the CNN-based reference platform.
arXiv Detail & Related papers (2023-08-22T03:13:57Z) - MOB-FL: Mobility-Aware Federated Learning for Intelligent Connected
Vehicles [21.615151912285835]
We consider a base station coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner.
Due to the mobility of vehicles, the connections between the base station and ICVs are short-lived.
We propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations.
arXiv Detail & Related papers (2022-12-07T08:53:53Z) - Large Scale Passenger Detection with Smartphone/Bus Implicit Interaction
and Multisensory Unsupervised Cause-effect Learning [5.449283796175882]
We focus on the concept of implicit Be-in/Be-out (BIBO) smartphone-sensing agnostic and classification.
To enable the training of a model based on GPS features against the BLE pseudo-label, we propose the Cause-Effect Multitask Wasserstein Autoencoder (CEMWA)
arXiv Detail & Related papers (2022-02-24T08:50:32Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - FedSup: A Communication-Efficient Federated Learning Fatigue Driving
Behaviors Supervision Framework [10.38729333916008]
FedSup is a client-edge-cloud framework for privacy and efficient fatigue detection.
Inspired by the federated learning technique, FedSup intelligently utilizes the collaboration between client, edge, and cloud server.
arXiv Detail & Related papers (2021-04-25T07:16:49Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.