Photonic quantum signatures of chaos and boson sampling
- URL: http://arxiv.org/abs/2307.13200v2
- Date: Tue, 1 Aug 2023 06:48:49 GMT
- Title: Photonic quantum signatures of chaos and boson sampling
- Authors: V. M. Bastidas, H. L. Nourse, A. Sakurai, A. Hayashi, S. Nishio, Kae
Nemoto, and W. J. Munro
- Abstract summary: In a typical boson sampling experiment, the scattering amplitude is determined by the permanent of a submatrix of a unitary drawn from an ensemble of random matrices.
We show that the unitary dynamics of a Floquet system may be exploited to perform sampling tasks with identical particles using single-mode phase shifters and multiport beamsplitters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Boson sampling is a paradigmatic example of a task that can be performed by a
quantum photonic computer yet is hard for digital classical computers. In a
typical boson sampling experiment, the scattering amplitude is determined by
the permanent of a submatrix of a unitary drawn from an ensemble of random
matrices. Random matrix theory plays a very important role in quite diverse
fields while at the same time being intimately related to quantum signatures of
chaos. Within this framework, a chaotic quantum system exhibits level
statistics characteristic of ensembles of random matrices. Such quantum
signatures are encoded in the unitary evolution and so in this work we combine
the dynamics of chaotic systems with boson sampling. One of the key results of
our work is that we demonstrate the intimate relation between out-of-time-order
correlators and boson sampling. We show that the unitary dynamics of a Floquet
system may be exploited to perform sampling tasks with identical particles
using single-mode phase shifters and multiport beamsplitters. At the end of our
paper propose a photonic implementation of the multiparticle kicked rotor,
which provides a concrete example of our general approach.
Related papers
- Stochastically bundled dissipators for the quantum master equation [0.0]
This article introduces a representation of the dissipator, using bundled measurement operators.
We demonstrate small samples of bundled operators capture the system's dynamics.
arXiv Detail & Related papers (2024-08-22T16:06:49Z) - Few-Body Quantum Chaos, Localization, and Multi-Photon Entanglement in Optical Synthetic Frequency Dimension [12.86091921421344]
We propose a novel approach to generate controllable frequency-entangled photons by using the concept of synthetic frequency dimension in an optical system.
This work is the first to explore rich and controllable quantum phases beyond single particle in a synthetic dimension.
arXiv Detail & Related papers (2024-06-11T15:14:21Z) - Random-matrix models of monitored quantum circuits [0.0]
We study the competition between Haar-random unitary dynamics and measurements for unstructured systems of qubits.
For projective measurements, we derive various properties of the statistical ensemble of Kraus operators.
We expect that the statistical properties of Kraus operators will serve as a model for the entangling phase of monitored quantum systems.
arXiv Detail & Related papers (2023-12-14T18:46:53Z) - Testing of on-cloud Gaussian Boson Sampler "Borealis'' via graph theory [0.0]
photonic-based sampling machines solving the Gaussian Boson Sampling problem play a central role in the experimental demonstration of a quantum computational advantage.
In this work, we test the performances of the recently developed photonic machine Borealis as a sampling machine and its possible use cases in graph theory.
arXiv Detail & Related papers (2023-06-21T09:02:55Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - The Complexity of Bipartite Gaussian Boson Sampling [0.0]
We show that under the standard Anti-Concentration and Permanent-of-Gaussians conjectures, there is no efficient algorithm to sample from ideal GBS unless the hierarchy collapses.
We also make progress towards the goal of proving hardness in the regime where there are fewer than quadratically more modes than photons.
arXiv Detail & Related papers (2021-10-13T18:08:37Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.