論文の概要: ChatGPT for Teaching and Learning: An Experience from Data Science
Education
- arxiv url: http://arxiv.org/abs/2307.16650v1
- Date: Mon, 31 Jul 2023 13:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-01 14:32:34.122502
- Title: ChatGPT for Teaching and Learning: An Experience from Data Science
Education
- Title(参考訳): 教師と学習のためのチャットGPT:データサイエンス教育の経験
- Authors: Yong Zheng
- Abstract要約: 大規模な言語モデルの実装と応用であるChatGPTは、最初のリリース以来大きな人気を集めている。
本稿では,データサイエンスコースにおけるChatGPTの利用,学生からの視点の収集,データサイエンス教育におけるChatGPTの実践と学習に対する経験とフィードバックの提示により,そのギャップを埋めることを目的とする。
- 参考スコア(独自算出の注目度): 5.406386303264086
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: ChatGPT, an implementation and application of large language models, has
gained significant popularity since its initial release. Researchers have been
exploring ways to harness the practical benefits of ChatGPT in real-world
scenarios. Educational researchers have investigated its potential in various
subjects, e.g., programming, mathematics, finance, clinical decision support,
etc. However, there has been limited attention given to its application in data
science education. This paper aims to bridge that gap by utilizing ChatGPT in a
data science course, gathering perspectives from students, and presenting our
experiences and feedback on using ChatGPT for teaching and learning in data
science education. The findings not only distinguish data science education
from other disciplines but also uncover new opportunities and challenges
associated with incorporating ChatGPT into the data science curriculum.
- Abstract(参考訳): 大規模な言語モデルの実装と応用であるChatGPTは、最初のリリース以来大きな人気を集めている。
研究者は、現実世界のシナリオでChatGPTの実用的メリットを活用する方法を模索している。
教育研究者は、プログラミング、数学、ファイナンス、臨床決定支援など、様々な主題でその可能性を研究してきた。
しかし、データサイエンス教育におけるその応用には限定的な注意が向けられている。
本稿では,データサイエンスコースにおけるChatGPTの利用,学生からの視点の収集,データサイエンス教育におけるChatGPTの実践と学習に対する経験とフィードバックの提示により,そのギャップを埋めることを目的とする。
この結果は、データサイエンス教育を他の分野と区別するだけでなく、ChatGPTをデータサイエンスカリキュラムに組み込む際の新たな機会と課題を明らかにする。
関連論文リスト
- ChatGPT in Research and Education: Exploring Benefits and Threats [1.9466452723529557]
ChatGPTはOpenAIが開発した強力な言語モデルである。
パーソナライズされたフィードバックを提供し、アクセシビリティを高め、対話的な会話を可能にし、授業の準備と評価を支援し、複雑な科目を教えるための新しい方法を導入する。
ChatGPTは従来の教育や研究システムにも挑戦している。
これらの課題には、オンライン試験の不正行為のリスク、学術的完全性を損なう可能性のある人間のようなテキストの生成、AIによって生成された情報の信頼性を評価することの難しさなどが含まれる。
論文 参考訳(メタデータ) (2024-11-05T05:29:00Z) - Adoption and Impact of ChatGPT in Computer Science Education: A Case Study on a Database Administration Course [0.46040036610482665]
本研究は,ChatGPTをデータベース管理学習支援ツールとして使用した37名の学生を対象に,探索的・相関研究を行った。
ChatGPTの使用と有効性は中等度であったが,学生の成績とChatGPT使用率との間には正の相関がみられた。
論文 参考訳(メタデータ) (2024-05-26T20:51:28Z) - Enhancing Programming Education with ChatGPT: A Case Study on Student Perceptions and Interactions in a Python Course [7.182952031323369]
本稿では,8週間にわたる1年生向けのPythonプログラミングコースにおいて,ChatGPTが学習に与える影響について検討する。
調査,オープンエンド質問,学生-ChatGPTダイアログデータからの回答を分析して,ChatGPTの有用性を総合的に把握することを目的とする。
本研究は,ChatGPTに対する肯定的な反応を明らかにし,プログラミング教育経験の向上におけるChatGPTの役割について考察する。
論文 参考訳(メタデータ) (2024-03-20T15:47:28Z) - Integrating ChatGPT in a Computer Science Course: Students Perceptions
and Suggestions [0.0]
本経験報告では,ChatGPTをコンピュータサイエンス科目に統合するための学生の認識と提案について考察する。
計算機科学科目では,ChatGPTを用いて慎重にバランスをとることが重要である。
論文 参考訳(メタデータ) (2023-12-22T10:48:34Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Transformative Effects of ChatGPT on Modern Education: Emerging Era of
AI Chatbots [36.760677949631514]
ChatGPTは、大量のデータの分析に基づいて、一貫性と有用な応答を提供するためにリリースされた。
予備評価の結果,ChatGPTは財務,コーディング,数学など各分野において異なる性能を示した。
不正確なデータや偽データを生成する可能性など、その使用には明らかな欠点がある。
ChatGPTを教育のツールとして使用すれば、学術的規制と評価のプラクティスを更新する必要がある。
論文 参考訳(メタデータ) (2023-05-25T17:35:57Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
本研究は,ChatGPT検出における最新の手法を包括的かつ現代的に評価するものである。
我々は、ChatGPTと人間からのプロンプトからなるベンチマークデータセットをキュレートし、医療、オープンQ&A、ファイナンスドメインからの多様な質問を含む。
評価の結果,既存の手法ではChatGPT生成内容を効果的に検出できないことがわかった。
論文 参考訳(メタデータ) (2023-04-04T03:04:28Z) - Does Synthetic Data Generation of LLMs Help Clinical Text Mining? [51.205078179427645]
臨床テキストマイニングにおけるOpenAIのChatGPTの可能性を検討する。
本稿では,高品質な合成データを大量に生成する新たな学習パラダイムを提案する。
提案手法により,下流タスクの性能が大幅に向上した。
論文 参考訳(メタデータ) (2023-03-08T03:56:31Z) - Is ChatGPT a General-Purpose Natural Language Processing Task Solver? [113.22611481694825]
大規模言語モデル(LLM)は、さまざまな自然言語処理(NLP)タスクをゼロショットで実行できることを実証している。
近年、ChatGPTのデビューは自然言語処理(NLP)コミュニティから大きな注目を集めている。
ChatGPTが多くのNLPタスクをゼロショットで実行できるジェネラリストモデルとして機能するかどうかはまだ分かっていない。
論文 参考訳(メタデータ) (2023-02-08T09:44:51Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。