論文の概要: Regular Variation in Hilbert Spaces and Principal Component Analysis for
Functional Extremes
- arxiv url: http://arxiv.org/abs/2308.01023v1
- Date: Wed, 2 Aug 2023 09:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 13:28:46.495432
- Title: Regular Variation in Hilbert Spaces and Principal Component Analysis for
Functional Extremes
- Title(参考訳): ヒルベルト空間の規則的変動と機能エクストリームの主成分分析
- Authors: Stephan Cl\'emen\c{c}on, Nathan Huet, Anne Sabourin
- Abstract要約: 我々はPeaks-Over-Thresholdフレームワークに自分自身を配置し、関数的極限は、相対的に大きい$L2$-norm $|X|$の観測$X$として定義される。
我々の目標は、このような極端な観測のために有限次元の射影をもたらす次元還元フレームワークを提案することである。
- 参考スコア(独自算出の注目度): 1.6734018640023431
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the increasing availability of data of functional nature, we
develop a general probabilistic and statistical framework for extremes of
regularly varying random elements $X$ in $L^2[0,1]$. We place ourselves in a
Peaks-Over-Threshold framework where a functional extreme is defined as an
observation $X$ whose $L^2$-norm $\|X\|$ is comparatively large. Our goal is to
propose a dimension reduction framework resulting into finite dimensional
projections for such extreme observations. Our contribution is double. First,
we investigate the notion of Regular Variation for random quantities valued in
a general separable Hilbert space, for which we propose a novel concrete
characterization involving solely stochastic convergence of real-valued random
variables. Second, we propose a notion of functional Principal Component
Analysis (PCA) accounting for the principal `directions' of functional
extremes. We investigate the statistical properties of the empirical covariance
operator of the angular component of extreme functions, by upper-bounding the
Hilbert-Schmidt norm of the estimation error for finite sample sizes. Numerical
experiments with simulated and real data illustrate this work.
- Abstract(参考訳): 関数の性質データの増加に動機づけられた我々は、定期的に変化するランダム要素の極値に対する一般的な確率的および統計的フレームワークを、$L^2[0,1]$で$X$で開発する。
我々は、関数極端を観測値 $x$ として定義し、その$l^2$-norm $\|x\|$ が比較的大きいピーク・オーバー・スレッショルド・フレームワークに自分自身を配置する。
我々は,このような極端な観測のために,有限次元射影を生じさせる次元縮小フレームワークを提案する。
私たちの貢献は倍です。
まず、一般的な分離可能なヒルベルト空間において値付けられた乱数に対する正規変分の概念を考察し、実数値変数の確率収束のみを含む新しい具体的な特徴付けを提案する。
次に,機能的極端の「方向」を考慮した機能的主成分分析(PCA)の概念を提案する。
有限標本サイズの推定誤差のヒルベルト・シュミットノルムを上界にすることで、極関数の角成分の経験的共分散作用素の統計的性質を調べる。
シミュレーションと実データによる数値実験はこの研究を説明している。
関連論文リスト
- Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
近年の研究では、再生カーネルヒルベルト空間(RKHS)がニューラルネットワークによる関数のモデル化に適した空間ではないことが示されている。
本稿では,有界ノルムを持つオーバーパラメータ化された2層ニューラルネットワークに適した関数空間について検討する。
論文 参考訳(メタデータ) (2024-04-29T15:04:07Z) - Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications [2.0584253077707477]
目的関数 $J(cdot)$ の定常点を求めるグラディエント・Descent (SGD) 法の収束特性について検討した。
この結果は、すべての定常点が大域最小値である性質を持つ invex' 関数のクラスに適用できる。
論文 参考訳(メタデータ) (2023-12-05T15:22:39Z) - Universal coding, intrinsic volumes, and metric complexity [3.4392739159262145]
ガウス的設定における逐次確率の割り当てについて検討し、ゴールは実数値観測の列を予測または等価に予測することである。
解析の一環として、一般集合のミニマックスについても記述し、情報理論の古典的な結果と最終的に関連づける。
論文 参考訳(メタデータ) (2023-03-13T16:54:04Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
線形汎関数に対するバイアス認識設計のためのアルゴリズムを提供する。
準ガウス雑音下での固定および適応設計に対する漸近的でない信頼集合を導出する。
論文 参考訳(メタデータ) (2022-05-26T20:56:25Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Nonparametric approximation of conditional expectation operators [0.3655021726150368]
最小の仮定の下で、$[Pf](x) := mathbbE[f(Y) mid X = x ]$ で定義される$L2$-operatorの近似について検討する。
我々は、再生されたカーネル空間上で作用するヒルベルト・シュミット作用素により、作用素ノルムにおいて$P$が任意に適切に近似できることを証明した。
論文 参考訳(メタデータ) (2020-12-23T19:06:12Z) - Non-asymptotic Optimal Prediction Error for Growing-dimensional
Partially Functional Linear Models [0.951828574518325]
予測誤差の最大値と最大値の上限を示す。
過剰な予測リスクの正確な上限は、非漸近的な形で示される。
モデルのKulback-Leibler分散の正則性仮定の下で、非漸近ミニマックス下界を導出する。
論文 参考訳(メタデータ) (2020-09-10T08:49:32Z) - Tight Nonparametric Convergence Rates for Stochastic Gradient Descent
under the Noiseless Linear Model [0.0]
このモデルに基づく最小二乗リスクに対する1パス, 固定段差勾配勾配の収束度を解析した。
特殊な場合として、ランダムなサンプリング点における値のノイズのない観測から単位区間上の実関数を推定するオンラインアルゴリズムを解析する。
論文 参考訳(メタデータ) (2020-06-15T08:25:50Z) - A Random Matrix Analysis of Random Fourier Features: Beyond the Gaussian
Kernel, a Precise Phase Transition, and the Corresponding Double Descent [85.77233010209368]
本稿では、データサンプルの数が$n$である現実的な環境で、ランダムフーリエ(RFF)回帰の正確さを特徴付けます。
この分析はまた、大きな$n,p,N$のトレーニングとテスト回帰エラーの正確な推定も提供する。
論文 参考訳(メタデータ) (2020-06-09T02:05:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。