論文の概要: Leveraging Few-Shot Data Augmentation and Waterfall Prompting for
Response Generation
- arxiv url: http://arxiv.org/abs/2308.01080v1
- Date: Wed, 2 Aug 2023 11:04:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-03 13:09:25.673577
- Title: Leveraging Few-Shot Data Augmentation and Waterfall Prompting for
Response Generation
- Title(参考訳): 応答生成のためのマイナショットデータ拡張とウォーターフォールプロンプトの活用
- Authors: Lea Krause, Selene B\'aez Santamar\'ia, Michiel van der Meer, Urja
Khurana
- Abstract要約: 本稿では,主観的知識を用いたタスク指向対話型モデリングのアプローチについて論じる。
提案手法は, 提案データセットに存在する応答長, 感情, 対話行動などの重要な要因を評価するデータ分析によって構成された。
DSTC11では,(1)タスク固有モデル探索,(2)最も頻繁な質問を全ての応答に取り入れること,(3)GPT-3とChatGPTの組み合わせによるウォーターフォール促進手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper discusses our approaches for task-oriented conversational
modelling using subjective knowledge, with a particular emphasis on response
generation. Our methodology was shaped by an extensive data analysis that
evaluated key factors such as response length, sentiment, and dialogue acts
present in the provided dataset. We used few-shot learning to augment the data
with newly generated subjective knowledge items and present three approaches
for DSTC11: (1) task-specific model exploration, (2) incorporation of the most
frequent question into all generated responses, and (3) a waterfall prompting
technique using a combination of both GPT-3 and ChatGPT.
- Abstract(参考訳): 本稿では,主観的知識を用いたタスク指向会話モデリングのアプローチについて,特に応答生成に着目して述べる。
提案手法は, 提案データセットに存在する応答長, 感情, 対話行動などの重要な要因を評価するデータ分析によって構成された。
我々は,新たに生成された主観的知識項目を用いてデータ拡張を行うため,(1)タスク固有のモデル探索,(2)生成されたすべての応答に最も頻繁な質問を組み込む,(3)gpt-3とchatgptの組み合わせを用いたウォーターフォールプロンプト手法という3つのアプローチを提案する。
関連論文リスト
- Retrieval-Augmented Neural Response Generation Using Logical Reasoning
and Relevance Scoring [2.3590037806133024]
本稿では,知識基底型応答生成に対する新しいアプローチを提案する。
検索強化された言語モデルと論理的推論を組み合わせる。
実験結果から,(確率的)論理的推論と会話関連性スコアの組合せは,応答の事実性と流布性の両方を増大させることが示された。
論文 参考訳(メタデータ) (2023-10-20T15:05:18Z) - InstructERC: Reforming Emotion Recognition in Conversation with Multi-task Retrieval-Augmented Large Language Models [9.611864685207056]
本稿では,識別的枠組みから大規模言語モデル(LLM)に基づく生成的枠組みへ,感情認識タスクを再構築するための新しいアプローチであるインストラクタCを提案する。
InstructERCは、3つの重要な貢献をしている:(1)モデルがマルチグラニュラリティ対話監視情報を明示的に統合するのに役立つ単純で効果的なテンプレートモジュール、(2)話者識別と感情予測タスクという2つの追加の感情アライメントタスクを導入し、会話における対話の役割の関係と将来の感情傾向を暗黙的にモデル化する。
論文 参考訳(メタデータ) (2023-09-21T09:22:07Z) - Promoting Open-domain Dialogue Generation through Learning Pattern
Information between Contexts and Responses [5.936682548344234]
本稿では,学習サンプルの文脈と応答の間の暗黙的なパターン情報を学ぶことにより,生成した応答の品質を向上させる。
また、文脈と応答間の暗黙的パターン情報をマイニングする応答認識機構を設計し、生成した応答をより多様でヒトの応答に近似するようにした。
論文 参考訳(メタデータ) (2023-09-06T08:11:39Z) - Diverse and Faithful Knowledge-Grounded Dialogue Generation via
Sequential Posterior Inference [82.28542500317445]
本稿では,知識の選択と対話生成が可能な,逐次後推論(Sequential Posterior Inference, SPI)と呼ばれるエンドツーエンド学習フレームワークを提案する。
他の方法とは異なり、SPIは推論ネットワークを必要とせず、後部分布の単純な幾何学を仮定する。
論文 参考訳(メタデータ) (2023-06-01T21:23:13Z) - What should I Ask: A Knowledge-driven Approach for Follow-up Questions
Generation in Conversational Surveys [63.51903260461746]
対話型調査における知識駆動型フォローアップ質問生成のための新しい課題を提案する。
そこで我々は,対話履歴とラベル付き知識を用いた人手によるフォローアップ質問の新しいデータセットを構築した。
次に,その課題に対する2段階の知識駆動モデルを提案する。
論文 参考訳(メタデータ) (2022-05-23T00:57:33Z) - Distant finetuning with discourse relations for stance classification [55.131676584455306]
そこで本研究では,定位分類のモデルとして,原文から銀ラベルでデータを抽出し,微調整する手法を提案する。
また,様々な段階において微調整に用いるデータのノイズレベルが減少する3段階のトレーニングフレームワークを提案する。
NLPCC 2021共有タスクArgumentative Text Understanding for AI Debaterでは,26の競合チームの中で1位にランクインした。
論文 参考訳(メタデータ) (2022-04-27T04:24:35Z) - Adapting Document-Grounded Dialog Systems to Spoken Conversations using
Data Augmentation and a Noisy Channel Model [46.93744191416991]
第10回ダイアログ・システム・テクノロジー・チャレンジ(DSTC10)第2章の報告を要約する。
このタスクは3つのサブタスクから構成される: ターンが知識を求めるかどうかを検知し、関連する知識文書を選択し、最後に接地された応答を生成する。
ベストシステムは,課題の人的評価において,第1位,第3位を達成できた。
論文 参考訳(メタデータ) (2021-12-16T12:51:52Z) - A Template-guided Hybrid Pointer Network for
Knowledge-basedTask-oriented Dialogue Systems [15.654119998970499]
本稿では,知識に基づくタスク指向対話システムのためのテンプレート誘導型ハイブリッドポインタネットワークを提案する。
本研究では,ゲーティング機構を備えたメモリポインタネットワークモデルを設計し,検索した回答と接地トラス応答とのセマンティックな相関関係をフル活用する。
論文 参考訳(メタデータ) (2021-06-10T15:49:26Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。