論文の概要: Studying Socially Unacceptable Discourse Classification (SUD) through
different eyes: "Are we on the same page ?"
- arxiv url: http://arxiv.org/abs/2308.04180v1
- Date: Tue, 8 Aug 2023 10:42:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 13:16:32.326922
- Title: Studying Socially Unacceptable Discourse Classification (SUD) through
different eyes: "Are we on the same page ?"
- Title(参考訳): 社会的に受け入れがたい談話分類(SUD)について : 「我々は同じページにいるのか?」
- Authors: Bruno Machado Carneiro, Michele Linardi, Julien Longhi
- Abstract要約: まず、さまざまなオンラインソースから手書きの注釈付きテキストを多種多様に含む新しいコーパスを構築、提示する。
このグローバルコンテキストにより、SUD分類器の一般化能力をテストすることができる。
この観点から、異なるアノテーションのモダリティがSUD学習にどのように影響するかを分析することができる。
- 参考スコア(独自算出の注目度): 4.87717454493713
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study Socially Unacceptable Discourse (SUD) characterization and detection
in online text. We first build and present a novel corpus that contains a large
variety of manually annotated texts from different online sources used so far
in state-of-the-art Machine learning (ML) SUD detection solutions. This global
context allows us to test the generalization ability of SUD classifiers that
acquire knowledge around the same SUD categories, but from different contexts.
From this perspective, we can analyze how (possibly) different annotation
modalities influence SUD learning by discussing open challenges and open
research directions. We also provide several data insights which can support
domain experts in the annotation task.
- Abstract(参考訳): オンラインテキストにおけるsud(socially unacceptable discourse)の特徴付けと検出について検討した。
我々は、これまで最先端の機械学習(ML) SUD検出ソリューションで使用されてきたさまざまなオンラインソースから、さまざまな手動の注釈付きテキストを含む、新しいコーパスを構築し、提示する。
このグローバルな文脈は、異なる文脈からではなく、同じSUDカテゴリに関する知識を取得するSUD分類器の一般化能力をテストすることができる。
この観点から、オープンチャレンジとオープンリサーチの方向性を議論することで、異なるアノテーションのモダリティがSUD学習にどのように影響するかを分析することができる。
また、アノテーションタスクでドメインエキスパートをサポートするいくつかのデータインサイトも提供します。
関連論文リスト
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
きめ細かい評価のための新しいアプローチを導入する。
テストキャプションを自動的に生成することで,既存のデータセットにアプローチを適用することができる。
きめ細かい評価実験は、このアプローチがきめ細かな違いを理解するモデルの能力を高めることを実証している。
論文 参考訳(メタデータ) (2024-10-16T09:42:29Z) - Text Classification using Graph Convolutional Networks: A Comprehensive Survey [11.1080224302799]
グラフ畳み込みネットワーク(GCN)ベースのアプローチは、この10年間、この分野で大きな注目を集めてきた。
本研究の目的は,GCNをベースとしたテキスト分類手法をアーキテクチャや監視方法に関して要約し,分類することである。
論文 参考訳(メタデータ) (2024-10-12T07:03:42Z) - Towards Few-Shot Learning in the Open World: A Review and Beyond [52.41344813375177]
少ないショット学習は、人間の知性を模倣し、大きな一般化と伝達性を実現することを目的としている。
本稿では,FSLをオープンワールド環境に適用するための最近の進歩について概説する。
既存の手法は,3つの異なるタイプのオープンワールド・マイクロショット・ラーニングに分類する。
論文 参考訳(メタデータ) (2024-08-19T06:23:21Z) - Exploiting Adaptive Contextual Masking for Aspect-Based Sentiment
Analysis [0.6827423171182154]
アスペクトベース知覚分析(Aspect-Based Sentiment Analysis、ABSA)は、与えられたテキストから多面的側面、意見、感情を抽出する問題である。
本稿では,ABSAのアスペクト・ターム抽出・アスペクト・センティメント・サブタスクを支援するために,コンテキストに基づく無関係なトークンを除去する適応マスキング手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T11:33:09Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - MAGE: Machine-generated Text Detection in the Wild [82.70561073277801]
大規模言語モデル(LLM)は人間レベルのテキスト生成を実現し、効果的なAI生成テキスト検出の必要性を強調している。
我々は、異なるLLMによって生成される多様な人文やテキストからテキストを収集することで、包括的なテストベッドを構築する。
問題にもかかわらず、トップパフォーマンス検出器は、新しいLCMによって生成された86.54%のドメイン外のテキストを識別することができ、アプリケーションシナリオの実現可能性を示している。
論文 参考訳(メタデータ) (2023-05-22T17:13:29Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - TextEssence: A Tool for Interactive Analysis of Semantic Shifts Between
Corpora [14.844685568451833]
TextEssenceは、埋め込みを用いたコーポラの比較分析を可能にするインタラクティブなシステムです。
TextEssenceには、軽量なWebベースのインターフェイスに、ビジュアル、隣り合わせ、および類似性ベースの組み込み分析モードが含まれています。
論文 参考訳(メタデータ) (2021-03-19T21:26:28Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - "To Target or Not to Target": Identification and Analysis of Abusive
Text Using Ensemble of Classifiers [18.053219155702465]
ソーシャルメディアプラットフォーム上での虐待的・憎悪的コンテンツを識別・分析するためのアンサンブル学習手法を提案する。
私たちの積み重ねられたアンサンブルは、3つの機械学習モデルで構成されており、言語のさまざまな側面をキャプチャし、不適切な言語に関する多様な一貫性のある洞察を提供する。
論文 参考訳(メタデータ) (2020-06-05T06:59:22Z) - Observations on Annotations [0.5175994976508882]
Hypertext、Computational Linguistics、Language Technology、Artificial Intelligence、Open Scienceなどだ。
複雑さの観点では、それらは自明なものから高度に洗練されたものまで、成熟度の観点からは実験的なものから標準化されたものまで様々である。
例えば、テキストドキュメントのような主要な研究データは、異なるレイヤに同時にアノテートすることができる。
論文 参考訳(メタデータ) (2020-04-21T20:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。