論文の概要: Cumulative Reasoning With Large Language Models
- arxiv url: http://arxiv.org/abs/2308.04371v1
- Date: Tue, 8 Aug 2023 16:18:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-09 12:05:49.100971
- Title: Cumulative Reasoning With Large Language Models
- Title(参考訳): 大規模言語モデルを用いた累積推論
- Authors: Yifan Zhang, Jingqin Yang, Yang Yuan, Andrew Chi-Chih Yao
- Abstract要約: 累積推論は、人間の思考過程をエミュレートするために累積的かつ反復的に言語モデルを採用する。
論理推論タスクでは、CRは既存のメソッドを最大9.3%上回っている。
24のゲームでは、CRは94%の精度を達成する。
- 参考スコア(独自算出の注目度): 13.410552577861587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While language models are powerful and versatile, they often fail to address
highly complex problems. This is because solving complex problems requires
deliberate thinking, which has been only minimally guided during training. In
this paper, we propose a new method called Cumulative Reasoning (CR), which
employs language models in a cumulative and iterative manner to emulate human
thought processes. By decomposing tasks into smaller components, \ournameb
streamlines the problem-solving process, rendering it both more manageable and
effective. For logical inference tasks, CR consistently outperforms existing
methods with an improvement up to 9.3\%, and achieves the astonishing accuracy
of 98.04\% on the curated FOLIO wiki dataset. In the context of the Game of 24,
CR achieves an accuracy of 94\%, which signifies a substantial enhancement of
20\% over the previous state-of-the-art method.
- Abstract(参考訳): 言語モデルは強力で多用途であるが、しばしば非常に複雑な問題に対処できない。
これは、複雑な問題を解決するには意図的な思考が必要であり、トレーニングの間は最小限の指導しか行われていないからである。
本稿では,言語モデルを累積的かつ反復的に活用し,人間の思考過程をエミュレートするCumulative Reasoning(CR)という新しい手法を提案する。
タスクを小さなコンポーネントに分解することで、 \ournamebは問題解決プロセスを合理化し、より管理しやすく、効果的にする。
論理推論タスクでは、CRは既存のメソッドを9.3\%改善し、計算済みのFOLIO wikiデータセットで98.04\%の驚くべき精度を達成する。
24 のゲームでは、CR は 94 % の精度を達成し、これは以前の最先端手法よりも 20 % の大幅な向上を意味する。
関連論文リスト
- Token-by-Token Regeneration and Domain Biases: A Benchmark of LLMs on Advanced Mathematical Problem-Solving [0.0]
本研究は,MATHデータセットを用いて10大言語モデル(LLM)を70億から80億のパラメータで評価する。
焦点は、9450以上のコード実行を含む、推論プロセスのステップとして実行可能なPythonコードを生成する能力である。
論文 参考訳(メタデータ) (2025-01-28T17:11:36Z) - Inference Scaling vs Reasoning: An Empirical Analysis of Compute-Optimal LLM Problem-Solving [0.0]
大規模言語モデル(LLM)の最近の進歩は、精度と推論能力の最大化に重点を置いている。
本稿では,2つの対照的なアプローチの統合を解析することにより,推論の強化と計算効率の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-12-20T08:42:45Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
MLLM(Multimodal large language model)は、多モーダルタスクにおいて大きな可能性を秘めている。
既存の命令チューニングデータセットは、中間的合理性のないフレーズレベルの答えのみを提供する。
そこで本研究では,大規模マルチモーダル・インストラクション・チューニング・データセットを構築するためのスケーラブルで費用対効果の高い手法を提案する。
論文 参考訳(メタデータ) (2024-12-06T18:14:24Z) - Exploring Performance Contrasts in TableQA: Step-by-Step Reasoning Boosts Bigger Language Models, Limits Smaller Language Models [6.083393426133172]
本稿では,大小言語モデル(LM)の性能コントラストを検討するために,テーブル論理(Table-Logic)と呼ばれる詳細なプロンプトフローを提案する。
本手法の展開により,Llama-3-70Bのような大型LMにおいて,HybridQA上のバニラに比べて7.8%の精度向上が見られた。
本研究は,小型モデルにおけるステップ・バイ・ステップの推論手法の限界を浮き彫りにし,改善のための潜在的洞察を提供するものである。
論文 参考訳(メタデータ) (2024-11-24T22:48:44Z) - BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search [22.672130194493793]
大規模言語モデル(LLM)は、幅広いタスクやドメインで例外的なパフォーマンスを示している。
彼らは数学の厳密で論理的な性質のため、数学の問題を解くのに依然として困難に直面している。
本稿では,数学的問題解決能力を高めるための新しい手法BEATSを提案する。
論文 参考訳(メタデータ) (2024-09-26T15:47:42Z) - Building Math Agents with Multi-Turn Iterative Preference Learning [56.71330214021884]
本稿では,モデル性能をさらに向上させるために,補完的な直接選好学習手法について検討する。
既存の直接選好学習アルゴリズムは、もともとシングルターンチャットタスク用に設計されている。
この文脈に合わせたマルチターン直接選好学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-04T02:41:04Z) - PORT: Preference Optimization on Reasoning Traces [1.7292887546437081]
本稿では,言語モデルの数学的推論性能を改善するために,Chain-of-Thoughtステップの優先最適化手法を提案する。
提案手法により,Falcon2-11B と Mistral-7B の GSM8K と AQuA-RAT の数学的推論ベンチマークの精度が向上する。
ARCベンチマークやシンボリック推論問題など、改良された能力は非数学的なタスクに移行した。
論文 参考訳(メタデータ) (2024-06-23T09:51:06Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
CoT(Chain-of-Thought)のプロンプトにより、さまざまな推論タスクにわたるLLM(Large Language Models)のパフォーマンスが向上した。
CoTは通常、セマンティックな誤解エラー、計算エラー、ステップミスという3つの落とし穴に悩まされる。
意味的誤解の誤りに対処し,LLMの数学的問題解決能力を改善するために,DUP(Deeply Understanding the Problems)を提案する。
論文 参考訳(メタデータ) (2024-04-23T12:16:05Z) - Masked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models [102.72940700598055]
推論タスクでは、小さなエラーでも不正確な結果にカスケードすることができる。
入力の摂動に頼らず、外部リソースの導入を避ける手法を開発した。
私たちのトレーニングアプローチでは、思考の連鎖の中で特定のトークンをランダムにマスクします。
論文 参考訳(メタデータ) (2024-03-04T16:21:54Z) - Tool-Augmented Reward Modeling [58.381678612409]
本稿では,外部環境へのアクセスによるRMの強化により,制約に対処するツール拡張された嗜好モデリング手法であるThemisを提案する。
我々の研究は、外部ツールをRMに統合し、様々な外部ソースとの相互作用を可能にすることを目的としている。
人間の評価では、テミスで訓練されたRLHFはベースラインと比較して平均32%の勝利率を得る。
論文 参考訳(メタデータ) (2023-10-02T09:47:40Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。