論文の概要: A Review on Objective-Driven Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2308.10135v1
- Date: Sun, 20 Aug 2023 02:07:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 17:38:34.609823
- Title: A Review on Objective-Driven Artificial Intelligence
- Title(参考訳): objective-driven artificial intelligence のレビュー
- Authors: Apoorv Singh
- Abstract要約: 人間は、コミュニケーションにおける文脈、ニュアンス、微妙な手がかりを理解する能力を持っている。
人間は、世界に関する論理的推論と予測を行うのに役立つ、常識的な知識の広大なリポジトリを持っています。
機械はこの本質的な理解に欠けており、人間が自明に感じる状況を理解するのに苦労することが多い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While advancing rapidly, Artificial Intelligence still falls short of human
intelligence in several key aspects due to inherent limitations in current AI
technologies and our understanding of cognition. Humans have an innate ability
to understand context, nuances, and subtle cues in communication, which allows
us to comprehend jokes, sarcasm, and metaphors. Machines struggle to interpret
such contextual information accurately. Humans possess a vast repository of
common-sense knowledge that helps us make logical inferences and predictions
about the world. Machines lack this innate understanding and often struggle
with making sense of situations that humans find trivial. In this article, we
review the prospective Machine Intelligence candidates, a review from Prof.
Yann LeCun, and other work that can help close this gap between human and
machine intelligence. Specifically, we talk about what's lacking with the
current AI techniques such as supervised learning, reinforcement learning,
self-supervised learning, etc. Then we show how Hierarchical planning-based
approaches can help us close that gap and deep-dive into energy-based,
latent-variable methods and Joint embedding predictive architecture methods.
- Abstract(参考訳): 人工知能は急速に進歩する一方で、現在のAI技術の本質的な限界と認識の理解のために、人間の知性に欠けています。
人間は、会話の文脈、ニュアンス、微妙な手がかりを理解する生まれつきの能力を持ち、ジョーク、皮肉、メタファーを理解することができる。
機械はそのような文脈情報を正確に解釈するのに苦労する。
人間は、世界に関する論理的推論や予測を行うのに役立つ、常識的な知識の膨大なリポジトリを持っています。
機械はこの本質的な理解を欠き、しばしば人間が自明に感じる状況の理解に苦しむ。
本稿では、今後の機械学習候補、Yann LeCun教授によるレビュー、およびこの人間とマシンインテリジェンスの間のギャップを埋めるための他の研究についてレビューする。
具体的には、教師付き学習、強化学習、自己教師型学習など、現在のAI技術に欠けているものについて話します。
次に,階層的計画に基づくアプローチが,そのギャップを狭くし,エネルギーベースの潜在変数型手法と統合埋め込み型予測型アーキテクチャ手法に深く入り込む上でどのように役立つかを示す。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI-as-exploration: Navigating intelligence space [0.05657375260432172]
私は、AIが果たさなければならない、無視されるが中心的な科学的な役割の輪郭を明確に表現します。
AI-as-explorationの基本的な推力は、知性の候補構築ブロックを明らかにするシステムの作成と研究である。
論文 参考訳(メタデータ) (2024-01-15T21:06:20Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - Understanding Natural Language Understanding Systems. A Critical
Analysis [91.81211519327161]
自然言語理解システム(Natural Language Understanding (NLU) system)としても知られる usguillemotright(英語版) のようなギユモトレフトークを持つ機械の開発は、人工知能の聖杯(英語版) (AI) である。
しかし、Gillemottalking machineguillemotrightを構築することができるという信頼は、次世代のNLUシステムによってもたらされたものよりも強かった。
私たちは新しい時代の夜明けに、ついに砂利が我々に近づいたのか?
論文 参考訳(メタデータ) (2023-03-01T08:32:55Z) - Reflective Artificial Intelligence [2.7412662946127755]
人間の心が以前この活動に持ち込んだであろう多くの重要な性質は、AIには全く欠落している。
人間がタスクにもたらす中核的な特徴は、リフレクションである。
しかし、この能力は、現在の主流AIには全く欠落している。
本稿では、リフレクティブAIがどのようなものになるかを尋ねる。
論文 参考訳(メタデータ) (2023-01-25T20:50:26Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - Making AI 'Smart': Bridging AI and Cognitive Science [0.0]
認知科学の統合により、人工知能の「人工的な」特徴はすぐに「スマート」に置き換えられるかもしれない
これにより、より強力なAIシステムが開発され、同時に人間の脳がどのように機能するかをよりよく理解できるようになる。
このような高度なシステムを開発するためには、まず人間の脳をよりよく理解する必要があるため、AIが人間の文明を乗っ取る可能性は低いと我々は主張する。
論文 参考訳(メタデータ) (2021-12-31T09:30:44Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
我々は、次世代のAIは、新しいタスクを解決するために、人間のような「暗黒」の常識を取り入れなければならないと論じている。
我々は、人間のような常識を持つ認知AIの5つの中核領域として、機能、物理学、意図、因果性、実用性(FPICU)を識別する。
論文 参考訳(メタデータ) (2020-04-20T04:07:28Z) - Human Evaluation of Interpretability: The Case of AI-Generated Music
Knowledge [19.508678969335882]
我々は、芸術と人文科学におけるAIが発見する知識/ルールを評価することに注力する。
本稿では,洗練された記号的/数値的対象として表現されたAI生成音楽理論/ルールの人間生成言語解釈を収集し,評価する実験手法を提案する。
論文 参考訳(メタデータ) (2020-04-15T06:03:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。