論文の概要: MRI Field-transfer Reconstruction with Limited Data: Regularization by
Neural Style Transfer
- arxiv url: http://arxiv.org/abs/2308.10968v1
- Date: Mon, 21 Aug 2023 18:26:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2023-08-23 20:09:12.497989
- Title: MRI Field-transfer Reconstruction with Limited Data: Regularization by
Neural Style Transfer
- Title(参考訳): 限られたデータによるmriフィールドトランスフォーメーション:ニューラルスタイルトランスフォーメーションによる正規化
- Authors: Guoyao Shen, Yancheng Zhu, Hernan Jara, Sean B. Andersson, Chad W.
Farris, Stephan Anderson, Xin Zhang
- Abstract要約: Denoising (RED) による正規化は、画像再構成の先行として Denoiser を組み込む一般的なパイプラインである。
本稿では,ニューラル・スタイル・トランスファー(RNST)法による正規化手法を提案する。
- 参考スコア(独自算出の注目度): 1.755209318470883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works have demonstrated success in MRI reconstruction using deep
learning-based models. However, most reported approaches require training on a
task-specific, large-scale dataset. Regularization by denoising (RED) is a
general pipeline which embeds a denoiser as a prior for image reconstruction.
The potential of RED has been demonstrated for multiple image-related tasks
such as denoising, deblurring and super-resolution. In this work, we propose a
regularization by neural style transfer (RNST) method to further leverage the
priors from the neural transfer and denoising engine. This enables RNST to
reconstruct a high-quality image from a noisy low-quality image with different
image styles and limited data. We validate RNST with clinical MRI scans from
1.5T and 3T and show that RNST can significantly boost image quality. Our
results highlight the capability of the RNST framework for MRI reconstruction
and the potential for reconstruction tasks with limited data.
- Abstract(参考訳): 近年の研究では,深層学習モデルを用いたMRI再建が成功している。
しかし、ほとんどの報告されたアプローチはタスク固有の大規模データセットのトレーニングを必要とする。
Denoising (RED) による正規化は、画像再構成の先行として Denoiser を組み込む一般的なパイプラインである。
redのポテンシャルは、デノイジング、デブラリング、スーパーレゾリューションといった複数の画像関連タスクで実証されている。
本研究では,ニューラル・スタイル・トランスファー(RNST)法による正規化を提案し,ニューラル・スタイル・ニューラル・トランスファーおよびデノナイジング・エンジンの先行点をさらに活用する。
これによりRNSTは、ノイズの多い低画質の画像から、異なる画像スタイルと限られたデータで高品質な画像を再構成することができる。
1.5Tと3Tの臨床MRIでRNSTを評価し,RNSTが画像品質を大幅に向上させることを示した。
以上の結果から,MRI再建のためのRNSTフレームワークの機能と,限られたデータを用いた再建作業の可能性を強調した。
関連論文リスト
- SING: Semantic Image Communications using Null-Space and INN-Guided Diffusion Models [52.40011613324083]
近年, 無線画像伝送において, 共用音源チャネル符号化システム (DeepJSCC) が顕著な性能を発揮している。
既存の手法では、送信された画像とレシーバーの再構成されたバージョンとの間の歪みを最小限に抑えることに重点を置いており、しばしば知覚的品質を見落としている。
逆問題として,破損した再構成画像から高品質な画像の復元を定式化する新しいフレームワークであるSINGを提案する。
論文 参考訳(メタデータ) (2025-03-16T12:32:11Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
本稿では, 微細なメタデータを再構成プロセスに統合したMRI用テキスト条件拡散モデルであるContextMRIを提案する。
メタデータの忠実度はスライス位置やコントラストから患者年齢、性別、病理まで増加し、体系的に再構築性能が向上することを示す。
論文 参考訳(メタデータ) (2025-01-08T05:15:43Z) - Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Noise Level Adaptive Diffusion Model for Robust Reconstruction of Accelerated MRI [34.361078452552945]
実世界のMRIは、熱ゆらぎによる固有のノイズを既に含んでいる。
そこで本研究では,Nila-DC (NoIse Level Adaptive Data Consistency) を用いた後方サンプリング手法を提案する。
提案手法は最先端のMRI再構成法を超越し,様々なノイズレベルに対して高い堅牢性を有する。
論文 参考訳(メタデータ) (2024-03-08T12:07:18Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - DiffCMR: Fast Cardiac MRI Reconstruction with Diffusion Probabilistic
Models [11.068359534951783]
DiffCMRは、アンダーサンプルMRI画像スライスからコンディショニング信号を知覚し、対応するフルサンプルMRI画像スライスを生成する。
我々は,MICCAI 2023 Cardiac MRI Restruction Challengeデータセットを用いたDiffCMRとT1/T2マッピングタスクの検証を行った。
その結果,本手法は従来の手法をはるかに上回り,最先端の性能を実現していることがわかった。
論文 参考訳(メタデータ) (2023-12-08T06:11:21Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Spatiotemporal implicit neural representation for unsupervised dynamic
MRI reconstruction [11.661657147506519]
Inlicit Neuraltruth (INR) は逆問題を解決するための強力なDLベースのツールとして登場した。
本研究では,高度にアンサンプされたk空間データから動的MRI再構成を改善するためのINRに基づく手法を提案する。
提案したINRは、ダイナミックMRI画像を暗黙の関数として表現し、それらをニューラルネットワークにエンコードする。
論文 参考訳(メタデータ) (2022-12-31T05:43:21Z) - Stable Deep MRI Reconstruction using Generative Priors [13.400444194036101]
本稿では,参照等級画像のみを生成的設定でトレーニングした,新しいディープニューラルネットワークベース正規化器を提案する。
その結果,最先端のディープラーニング手法に匹敵する競争性能が示された。
論文 参考訳(メタデータ) (2022-10-25T08:34:29Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
MRI観察行列を用いて,反復型MGDUNアルゴリズムを新しいモデル誘導深部展開ネットワークに展開する方法を示す。
本稿では,医療画像SR再構成のためのモデルガイド型解釈可能なDeep Unfolding Network(MGDUN)を提案する。
論文 参考訳(メタデータ) (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
加速MRIの一般的なアプローチは、k空間データをアンサンプすることである。
アンサンプはスキャン手順を高速化する一方で、画像内のアーティファクトを生成し、アーティファクトのない画像を生成するために高度な再構築アルゴリズムが必要である。
本研究では、新しい進化的ニューラルネットワーク探索アルゴリズムを用いて、最適化されたニューラルネットワークを用いて、アンダーサンプルデータからのMRI再構成を行った。
論文 参考訳(メタデータ) (2022-06-15T03:42:18Z) - Invertible Sharpening Network for MRI Reconstruction Enhancement [17.812760964428165]
InvSharpNet(InvSharpNet)は,MRI再建の視覚的品質を改善するために提案される。
入力データを地上の真実にマッピングする従来の方法とは異なり、InvSharpNetは、ぼやけた変換を学ぶための後方トレーニング戦略を適用している。
さまざまなMRIデータセットの実験では、InvSharpNetはアーティファクトの少ない再構築シャープネスを改善することができる。
論文 参考訳(メタデータ) (2022-06-06T18:21:48Z) - A Long Short-term Memory Based Recurrent Neural Network for
Interventional MRI Reconstruction [50.1787181309337]
本稿では,畳み込み長短期記憶(Conv-LSTM)に基づくリカレントニューラルネットワーク(Recurrent Neural Network, RNN)を提案する。
提案アルゴリズムは,DBSのリアルタイムi-MRIを実現する可能性があり,汎用的なMR誘導介入に使用できる。
論文 参考訳(メタデータ) (2022-03-28T14:03:45Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
MR画像再構成のための最近のディープラーニングに基づく手法は、通常、汎用的なオートエンコーダアーキテクチャを利用する。
OUCR(Over-and-Under Complete Convolu?tional Recurrent Neural Network)を提案する。
提案手法は, トレーニング可能なパラメータの少ない圧縮されたセンシングと, 一般的なディープラーニングに基づく手法に対して, 大幅な改善を実現する。
論文 参考訳(メタデータ) (2021-06-16T15:56:34Z) - Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial
Transformers [0.0]
Zero-Shot Learned Adrial Transformers (SLATER) を用いた新しい非監視MRI再構成法を提案する。
アンダーサンプルテストデータ上でゼロショット再構成を行い、ネットワークパラメータを最適化して推論を行います。
脳MRIデータセットの実験は、いくつかの最先端の教師なし手法に対してSLATERの優れた性能を明らかに示している。
論文 参考訳(メタデータ) (2021-05-15T02:01:21Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
本研究では,新しい適応勾配バランス手法を併用したwasserstein生成逆ネットワークを用いて,画質の向上を図る。
MRIでは、他の技術よりも鮮明な画像を生成する高品質の再構築を維持しながら、アーティファクトを最小限に抑えます。
論文 参考訳(メタデータ) (2021-04-05T13:05:22Z) - Deep Residual Dense U-Net for Resolution Enhancement in Accelerated MRI
Acquisition [19.422926534305837]
本稿では,MRIの高速化による高画質画像の再構成を目的としたディープラーニング手法を提案する。
具体的には、畳み込みニューラルネットワーク(CNN)を用いて、エイリアス画像と元の画像の違いを学習する。
ダウンサンプリングされたk空間データの特異性を考慮すると、与えられたk空間データを効果的に活用する学習における損失関数に新しい用語を導入する。
論文 参考訳(メタデータ) (2020-01-13T19:01:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。