論文の概要: Digital Twin-Oriented Complex Networked Systems based on Heterogeneous
node features and interaction rules
- arxiv url: http://arxiv.org/abs/2308.11034v1
- Date: Fri, 18 Aug 2023 01:54:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 14:04:35.696944
- Title: Digital Twin-Oriented Complex Networked Systems based on Heterogeneous
node features and interaction rules
- Title(参考訳): 不均一ノード特徴と相互作用規則に基づくディジタルツイン配向複合ネットワークシステム
- Authors: Jiaqi Wen, Bogdan Gabrys, Katarzyna Musial
- Abstract要約: 本研究では,Digital Twin-Oriented Complex Networked Systemsのための拡張可能なモデリングフレームワークを提案する。
我々は,これらのネットワークに広まる流行に関連するネットワーク成長と異なる透過性に関する様々な特徴と規則を取り入れたシミュレーションベースのDT-CNSの実験を行う。
- 参考スコア(独自算出の注目度): 13.28255056212425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes an extendable modelling framework for Digital
Twin-Oriented Complex Networked Systems (DT-CNSs) with a goal of generating
networks that faithfully represent real systems. Modelling process focuses on
(i) features of nodes and (ii) interaction rules for creating connections that
are built based on individual node's preferences. We conduct experiments on
simulation-based DT-CNSs that incorporate various features and rules about
network growth and different transmissibilities related to an epidemic spread
on these networks. We present a case study on disaster resilience of social
networks given an epidemic outbreak by investigating the infection occurrence
within specific time and social distance. The experimental results show how
different levels of the structural and dynamics complexities, concerned with
feature diversity and flexibility of interaction rules respectively, influence
network growth and epidemic spread. The analysis revealed that, to achieve
maximum disaster resilience, mitigation policies should be targeted at nodes
with preferred features as they have higher infection risks and should be the
focus of the epidemic control.
- Abstract(参考訳): 本研究では,実システムに忠実なネットワークを生成することを目的とした,Digital Twin-Oriented Complex Networked Systems(DT-CNS)の拡張可能なモデリングフレームワークを提案する。
モデリングプロセスは焦点を絞る
(i)ノードの特徴、及び
(ii)個々のノードの好みに基づいて構築された接続を作成するための相互作用ルール。
我々は,これらのネットワークに広まる流行に関連するネットワーク成長と異なる透過性に関する様々な特徴と規則を取り入れたシミュレーションベースのDT-CNSの実験を行う。
本研究は,特定の時間と社会的距離内で発生した感染状況を調査し,疫病発生時におけるソーシャルネットワークの災害回復性に関するケーススタディである。
実験の結果, 相互作用規則の特徴の多様性と柔軟性をそれぞれ考慮し, 構造的・ダイナミクス的複雑度の違いが, ネットワークの成長と流行にどのように影響するかを示した。
分析の結果,災害のレジリエンスを最大化するためには,感染リスクが高いため望ましい特徴を有するノードを対象とし,流行対策の焦点となるべきと考えられた。
関連論文リスト
- Online Multi-modal Root Cause Analysis [61.94987309148539]
ルート原因分析(RCA)は、マイクロサービスシステムにおける障害の根本原因の特定に不可欠である。
既存のオンラインRCAメソッドは、マルチモーダルシステムにおける複雑な相互作用を見渡す単一モーダルデータのみを処理する。
OCEANは、根本原因の局在化のための新しいオンラインマルチモーダル因果構造学習手法である。
論文 参考訳(メタデータ) (2024-10-13T21:47:36Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Heterogeneous Feature Representation for Digital Twin-Oriented Complex
Networked Systems [13.28255056212425]
現実を正確に表現できる複雑なネットワークシステムのモデルを構築することは、重要な研究領域を形成する。
本研究の目的は,Digital Twin-Oriented Complex Networked Systemsにおけるノード特徴の表現力を改善することである。
論文 参考訳(メタデータ) (2023-09-23T01:40:56Z) - Stochastic Step-wise Feature Selection for Exponential Random Graph
Models (ERGMs) [2.1005766703532713]
本研究では,指数ランダムグラフモデルにおける内在変数選択に着目した新しい手法を提案し,検証する。
提案手法は, 計算負荷を克服し, 観測されたネットワーク依存の収容性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-07-24T15:02:03Z) - Hierarchical Graph Neural Networks for Causal Discovery and Root Cause
Localization [52.72490784720227]
REASONはTopological Causal DiscoveryとPersonal Causal Discoveryで構成されている。
Topological Causal Discoveryコンポーネントは、根本原因を辿るために断層伝播をモデル化することを目的としている。
個々の因果発見コンポーネントは、単一のシステムエンティティの突然の変化パターンのキャプチャに重点を置いている。
論文 参考訳(メタデータ) (2023-02-03T20:17:45Z) - Asymptotic-Preserving Neural Networks for multiscale hyperbolic models
of epidemic spread [0.0]
多くの状況において、感染症の空間的伝播は、多スケールのPDEによって管理される異なるスケールの個体の動きによって特徴づけられる。
複数のスケールが存在する場合、PINNの直接適用は一般的に、ニューラルネットワークの損失関数における微分モデルのマルチスケールの性質のため、結果の低下につながる。
本稿では,パンデミック拡散のマルチスケール多代謝輸送モデルのための新しいAPニューラルネットワーク(APNN)について考察する。
論文 参考訳(メタデータ) (2022-06-25T11:25:47Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
脳ネットワークの構造的エッジと機能的エッジの相互作用に着目して,結合ネットワークの概念を検討する。
相互作用を推定しながらノイズ項にハードネットワークの制約を課す新しい定式化を提案する。
ヒトコネクトームプロジェクトから得られたマルチシェル拡散およびタスク誘発fMRIデータセットの手法を検証する。
論文 参考訳(メタデータ) (2021-04-19T06:23:31Z) - An Extended Epidemic Model on Interconnected Networks for COVID-19 to
Explore the Epidemic Dynamics [2.89591830279936]
パンデミックコントロールは、感染した個人の傾向や影響を捉える疫病モデルを必要とする。
多くのエキサイティングなモデルはこれを実装できるが、実践的な解釈性に欠ける。
本研究は疫学とネットワーク理論を融合し,因果解釈能力を持つ枠組みを提案する。
論文 参考訳(メタデータ) (2021-04-10T06:46:01Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
ニューラルネットワークでは、あらゆる相互作用する特徴は共通の隠蔽ユニットとの強い重み付けの接続に従う必要がある。
本稿では, 永続的ホモロジーの理論に基づいて, 相互作用強度を定量化するための新しい尺度を提案する。
PID(Persistence Interaction Detection)アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-10-25T02:15:24Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。