論文の概要: Explicability and Inexplicability in the Interpretation of Quantum
Neural Networks
- arxiv url: http://arxiv.org/abs/2308.11098v1
- Date: Tue, 22 Aug 2023 00:43:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 19:38:07.589580
- Title: Explicability and Inexplicability in the Interpretation of Quantum
Neural Networks
- Title(参考訳): 量子ニューラルネットワークの解釈における説明可能性と説明可能性
- Authors: Lirand\"e Pira, Chris Ferrie
- Abstract要約: AI手法の解釈可能性、特にディープニューラルネットワークは、AI支援システムの普及によって大きな関心を集めている。
本稿では,量子ニューラルネットワークと古典ニューラルネットワークの局所的モデルに依存しない解釈可能性尺度を用いて,量子ニューラルネットワークの解釈可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpretability of artificial intelligence (AI) methods, particularly deep
neural networks, is of great interest due to the widespread use of AI-backed
systems, which often have unexplainable behavior. The interpretability of such
models is a crucial component of building trusted systems. Many methods exist
to approach this problem, but they do not obviously generalize to the quantum
setting. Here we explore the interpretability of quantum neural networks using
local model-agnostic interpretability measures of quantum and classical neural
networks. We introduce the concept of the band of inexplicability, representing
the interpretable region in which data samples have no explanation, likely
victims of inherently random quantum measurements. We see this as a step toward
understanding how to build responsible and accountable quantum AI models.
- Abstract(参考訳): 人工知能(AI)手法の解釈可能性、特にディープニューラルネットワークは、しばしば説明不能な振る舞いを持つAI支援システムの普及によって大きな関心を集めている。
このようなモデルの解釈性は、信頼できるシステムを構築する上で重要な要素である。
この問題にアプローチするために多くの方法が存在するが、量子設定に明らかに一般化していない。
本稿では,量子ニューラルネットワークと古典ニューラルネットワークの局所的モデルに依存しない解釈可能性尺度を用いて,量子ニューラルネットワークの解釈可能性を検討する。
我々は、データサンプルが説明できない解釈可能な領域、おそらくは本質的にランダムな量子測定の犠牲者を表す、説明不能な帯域の概念を導入する。
これは、責任と説明責任を持つ量子AIモデルを構築する方法を理解するためのステップだと考えています。
関連論文リスト
- QIXAI: A Quantum-Inspired Framework for Enhancing Classical and Quantum Model Transparency and Understanding [0.0]
ディープラーニングモデルは、解釈可能性の欠如によってしばしば妨げられ、それらを"ブラックボックス"にする。
本稿では、量子インスピレーションによるニューラルネットワークの解釈性向上のための新しいアプローチであるQIXAIフレームワークを紹介する。
このフレームワークは量子システムと古典システムの両方に適用され、様々なモデルにおける解釈可能性と透明性を改善する可能性を示している。
論文 参考訳(メタデータ) (2024-10-21T21:55:09Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
本稿では,ニューラルネットワークプロトコルと古典的シャドウの強みを組み合わせたデータ中心学習パラダイムを提案する。
ニューラルネットワークの一般化力に基づいて、このパラダイムはオフラインでトレーニングされ、これまで目に見えないシステムを予測できる。
量子状態トモグラフィーおよび直接忠実度推定タスクにおいて、我々のパラダイムのインスタンス化を示し、60量子ビットまでの数値解析を行う。
論文 参考訳(メタデータ) (2023-08-22T09:11:53Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Deep learning of many-body observables and quantum information scrambling [0.0]
物理オブザーバブルの力学を学習する際のデータ駆動型ディープニューラルネットワークの能力が、量子情報のスクランブルとどのように相関するかを考察する。
ニューラルネットワークを用いて、モデルのパラメータからランダム量子回路における可観測物の進化へのマッピングを求める。
特定のタイプのリカレントニューラルネットワークは、局所的およびスクランブルされた状態の両方でトレーニングされたシステムサイズと時間ウィンドウ内での予測を一般化する上で非常に強力であることを示す。
論文 参考訳(メタデータ) (2023-02-09T13:14:10Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
量子自己アテンションニューラルネットワーク(QSANN)と呼ばれる,新しいシンプルなネットワークアーキテクチャを提案する。
本稿では,量子ニューラルネットワークに自己アテンション機構を導入し,ガウス射影量子自己アテンションを自己アテンションの有感な量子バージョンとして活用する。
提案手法は低レベル量子雑音に対するロバスト性を示し,量子ニューラルネットワークアーキテクチャに対するレジリエンスを示す。
論文 参考訳(メタデータ) (2022-05-11T16:50:46Z) - The dilemma of quantum neural networks [63.82713636522488]
量子ニューラルネットワーク(QNN)は、古典的な学習モデルに対して何の恩恵も与えないことを示す。
QNNは、現実世界のデータセットの一般化が不十分な、極めて限られた有効モデル能力に悩まされている。
これらの結果から、現在のQNNの役割を再考し、量子的優位性で現実の問題を解決するための新しいプロトコルを設計せざるを得ない。
論文 参考訳(メタデータ) (2021-06-09T10:41:47Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。