論文の概要: Forecasting inflation using disaggregates and machine learning
- arxiv url: http://arxiv.org/abs/2308.11173v1
- Date: Tue, 22 Aug 2023 04:01:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-23 13:43:21.850054
- Title: Forecasting inflation using disaggregates and machine learning
- Title(参考訳): 分散と機械学習を用いたインフレーション予測
- Authors: Gilberto Boaretto and Marcelo C. Medeiros
- Abstract要約: 我々は、インフレーションの異なる分散レベルを考慮し、線形および非線形機械学習(ML)モデルと同様に、様々な伝統的な時系列技術を用いて、より多くの予測値を扱う。
多くの予測地平線において、非凝集予測の集計は、この集計を用いて直接予測を生成するサーベイベースの予測とモデルと同様に実行される。
本研究は,ML手法による非凝集予測の集約を含む,データ豊富な環境下でのインフレーション予測におけるモデルの活用のメリットを裏付けるものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the effectiveness of several forecasting methods for
predicting inflation, focusing on aggregating disaggregated forecasts - also
known in the literature as the bottom-up approach. Taking the Brazilian case as
an application, we consider different disaggregation levels for inflation and
employ a range of traditional time series techniques as well as linear and
nonlinear machine learning (ML) models to deal with a larger number of
predictors. For many forecast horizons, the aggregation of disaggregated
forecasts performs just as well survey-based expectations and models that
generate forecasts using the aggregate directly. Overall, ML methods outperform
traditional time series models in predictive accuracy, with outstanding
performance in forecasting disaggregates. Our results reinforce the benefits of
using models in a data-rich environment for inflation forecasting, including
aggregating disaggregated forecasts from ML techniques, mainly during volatile
periods. Starting from the COVID-19 pandemic, the random forest model based on
both aggregate and disaggregated inflation achieves remarkable predictive
performance at intermediate and longer horizons.
- Abstract(参考訳): 本稿では, ボトムアップ手法として文献で知られている非凝集予測の集約に着目し, インフレ予測手法の有効性を検討する。
ブラジルのケースを応用として、インフレーションの異なる分散レベルを検討し、線形および非線形機械学習(ML)モデルと同様に、様々な伝統的な時系列技術を用いて、より多くの予測子を扱う。
多くの予測地平線において、集計された予測の集約は、集計から直接予測を生成する調査ベースの予測やモデルと同様に実行される。
総じて、ML法は従来の時系列モデルを予測精度で上回り、デアグリゲートの予測性能に優れていた。
本研究は,主に揮発期におけるML手法からの非凝集予測の集約を含む,インフレ予測のためのデータ豊富な環境におけるモデルの利用のメリットを裏付けるものである。
新型コロナウイルス(COVID-19)のパンデミック(パンデミック)から始まり、集合的・非凝集的なインフレーションに基づくランダムな森林モデルは、中間地平線とより長い地平線において顕著な予測性能を達成する。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Forecasting with Deep Learning: Beyond Average of Average of Average Performance [0.393259574660092]
予測モデルの評価と比較の現在のプラクティスは、パフォーマンスを1つのスコアにまとめることに集中しています。
複数の視点からモデルを評価するための新しいフレームワークを提案する。
このフレームワークの利点は、最先端のディープラーニングアプローチと古典的な予測手法を比較して示す。
論文 参考訳(メタデータ) (2024-06-24T12:28:22Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
本稿では,ガウス過程(GP)を基礎構造を持つ平均回帰時系列の予測に適用する。
GPは、平均予測だけでなく、将来の軌道上の確率分布全体を予測する可能性を提供する。
これは、不正なボラティリティ評価が資本損失につながる場合、正確な予測だけでは十分でない金融状況において特に有益である。
論文 参考訳(メタデータ) (2024-02-23T06:09:45Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
本稿では,時系列予測における対実生成の新たな問題を定式化し,ForecastCFと呼ばれるアルゴリズムを提案する。
ForecastCFは、勾配に基づく摂動を元の時系列に適用することで、この問題を解決する。
以上の結果から,ForecastCFは,逆ファクト的妥当性とデータ多様体の近接性の観点から,ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-10-12T08:51:59Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting [10.083361616081874]
本研究では,機械学習モデル(ML)を時系列予測のための後処理ツールとして応用することを検討した。
相対湿度, 海面圧力, 地電位高さなど, タグ付き数値アンサンブル予測および観測データをML法に取り入れた。
回帰、量子レグレッション、tercile 分類タスクでは、線形モデル、ランダムフォレスト、畳み込みニューラルネットワーク、および積み重ねモデルを用いて検討する。
論文 参考訳(メタデータ) (2022-11-29T01:11:04Z) - Volatility forecasting using Deep Learning and sentiment analysis [0.0]
本稿では、市場ボラティリティを予測するための感情分析と深層学習を融合した複合モデルを提案する。
次に、過去の感情と前日の変動を利用して予測を行う合成予測モデル、Long-Short-Term-Memory Neural Network法について述べる。
論文 参考訳(メタデータ) (2022-10-22T14:54:33Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。